
 
 

Table Lookup by Direct Addressing: From V8 to V9 
 

Paul M. Dorfman, Independent Consultant, Jacksonville, FL 
 
   
   

ABSTRACT 
 
Table lookup is one of the most, if not the most, important 
and frequently performed data processing operations. The 
SAS System supports this assertion with a roster of built-in 
searching techniques, such as merges, joins, formats, 
indexes, and search-specific operators and functions.  
 
It is therefore all the more surprising that until the advent of 
Version 9 the fastest, i.e. direct-addressing searching 
algorithms, such as hashing and bitmapping, have not been 
available in a built-in form. This gap has been partially 
covered by SAS programmers crazy enough to hand-code 
their own hash-based schemes using the power of the SAS 
Language.            
 
In Version 9, however, the situation has finally changed. Not 
only has it made direct addressing available in the form of a 
built-in hash table (associative array) object, which can be 
searched much faster than any other SAS lookup structure, 
but with it, Version 9 has also introduced the first truly run-
time dynamic, memory-resident Data step structure.        
 
In this talk, we will get a taste of this new exciting SAS 
instrument and some cool things it can help us do. We will 
also see that it does not make hand-coded hashing methods 
instantly obsolete. Both have their place in a SAS user's 
repertoire, the choice depending on the data knowledge and 
programming and/or computer efficiency.     
 
I. INTRODUCTION 
 
Table lookup or searching is, practically speaking, the most 
common data processing operation. In this respect, the 
closest that comes to mind is sorting, but then almost always 
the ultimate goal of sorting is to organize a search. SAS 
addresses this situation like in no other software package by 
providing the programmer with an incredibly rich collection 
of built-in searching techniques. 
 
Purposely limiting ourselves, for the time being, by Version 
8, we might, for example, think of: 
 
• Conditional (IF-THEN-ELSE) logic and the case (SELECT) 

structure 
• Search operators, such as IN, LIKE, etc.  
• The MERGE statement 
• SQL with all its bells and whistles 
• Formats and informats 
• SAS indexes 
• String-searching functions and regular expressions 
• Internal in-memory trees implicitly used by class-type 

procedures     
 
These instruments embrace a variety of searching situations 
and employ a number of various lookup algorithms. Some of 
them are designed to operate in memory, others - on disk. 
However, all of them (except for the SQXJHSH available 
through SQL), have a number of properties in common: 
 
1. They are based on comparing a search key to one or 

more keys in the table.  
2. In this respect, they (and hence their efficiency) only 

differ in the number of key comparisons needed to 

discover whether a search key is among the lookup keys 
or not. 

3. If the number of lookup keys increases N times, the 
number of comparisons necessary to locate or reject a 
search key increases, in the best case scenario, log2(N) 
times. 

 
A principally different searching strategy is employed by the 
SQXJHSH method. With SQXJHSH, the number of key 
comparisons per act of searching - and thus the speed of the 
latter – either no longer depends on the number of lookup 
keys or grows with N much slower than log2(N). Looking a 
whit forward, such behavior is typical for direct-addressing, 
as opposed to key-comparison, lookup methods. In Version 8 
and before, SQXJHSH has been the only SAS-supplied direct-
addressing search method, and since it is an SQL-only, no 
such method has been available in the Data step.  
 
This shortcoming is in part compensated by the SAS 
Language with enough tools to help programmers implement 
their own searching methods, if need be, for instance: 
 
• SAS arrays 
• Direct SAS file access via the POINT= option 
• SASFILE statement allowing to pre-buffer an entire data 

set in memory 
 
These tools and/or structures, together with the rest of the 
language, are sufficient for implementing just about any 
searching algorithm. Of course, techniques based on these 
tools are not ready-to-go routines, and they have to be 
custom-coded. But by the same token, they are more flexible 
and thus often result in routines searching much faster and 
using fewer resources.   
 
Hashing Semantics 
 
In the title of the paper, the term “hashing” was used 
collectively to denote the whole group of memory-resident 
searching methods not primarily based on comparison 
between keys, but on direct addressing. Although strictly 
speaking, hashing per se is just one of direct-addressing 
techniques, using it as a collective term has become 
common. Hopefully, it will be clear from the context in which 
sense the term is used. Mostly, it will be used in its strict 
meaning.    
 
In fact, someone has even had enough time and inspiration 
to implement a number of direct-addressing searching 
techniques in the Data step and show that they work well 
enough in order to be useful! This set of hand-coded direct-
addressing routines, together with a rather painful delving 
into their guts, was presented at SUGI 26 and 27 [1, 2]. For 
the lack of a better description, let us call them, and 
anything that can be derived from them, V8-Hash.  
 
V8-Hash has a number of drawbacks – which we will go on 
to discuss later – inevitable for almost any more or less 
complex, performance oriented routine coded in a very high-
level language, such as the SAS data step. But by the same 
token, it has a number of advantages, primarily: The code is 
available, and so it can be tweaked, changed to 
accommodate different specifications, retuned, etc.  
       



However, the most important consequence of V8-Hash 
activity was that it might have impact on the advent of V9-
Hash that arrived shortly after the game has been joined by 
SAS. And lo and behold, in Version 9, we have a present in 
the form of an object called associative array, or - yes, you 
guessed right! - hash. This object can be used as a canned 
box to search data via a direct-addressing algorithm 
implemented internally. It is a real breakthrough in more 
ways than one.             
 
II. DIRECT-ADDRESSING: PROPAEDEUTICS 
 
To make the discussion more concrete, consider a common task of 
matching two data files by a common key. Suppose that an unsorted 
SAS data file SMALL contains N_SMALL records with a numeric integer 
variable KEY and a satellite variable S_SAT. Another unsorted file 
called LARGE, with N_LARGE records also has the variable KEY and a 
satellite L_SAT. Assume that 1) LARGE is not sorted and, for whatever 
reason, cannot be sorted and 2) there is enough memory to hold the 
entire SMALL, or at least KEY and a numeric pointer to its records.    
 
Given these conditions, What is the most efficient way to subset 
LARGE based on the values of KEY in SMALL to produce a file 
MATCH?  
 
SAS offers a number of ready-to-go tools based on in-
memory table lookup. Just to mention a couple:  
 
1. Compile unduplicated keys from SMALL into a format 

using CNTLIN= option, and search it for each KEY read 
from LARGE. 

2. Load the keys from SMALL into a sorted array and use a 
hand-coded binary or interpolation search to look for 
each key from LARGE.       

 
Why look for something else? The efficiency and speed of 
such methods are principally limited, because they are 
comparison-based. It is known that for an arbitrarily 
distributed lookup keys, no comparison-based method can 
do better than the binary search. The latter, to either find 
search key among N lookup keys or reject it, must make no 
less than the average of log2(N)+1 comparisons. For 
N=1,000,000 it costs 20 comparisons plus computations and 
logic. Sometimes it is expressed by saying that the binary 
search runs in O(log(N)) time. 
 
Removing key comparisons as the primary basis of searching 
could thus be highly beneficial. But is it possible to search for 
a key without comparing it with the keys in a lookup table at 
least once? A rather paradoxical answer to this question is 
“yes”. It is given by a radically different searching philosophy 
called direct addressing. And direct addressing finds its pure 
expression in key-indexed search.  
 
 
Key-indexing 
 
The idea is simple. Assume that all keys are 1-digit numbers 
from 0 to 9, and SMALL has only 9 records: 
 
OBS   | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
------+---+---+---+---+---+---+---+---+--- 
KEY   | 2 | 3 | 5 | 2 | 7 | 9 | 5 | 7 | 3   
------+---+---+---+---+---+---+---+---+--- 
S_SAT | 1 | 2 | 3 | 0 | 4 | 5 | 6 | 9 | 7  
 
Let us create a temporary array HKEY with one node 
(location, address) allocated for each possible key value. By 
default, SAS will initialize all the buckets to missing values. 
HKEY can be thought of as the following table in memory:   
 
 
 

 
 
--------------------------------------------- 
H    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
-----+---+---+---+---+---+---+---+---+------- 
HKEY | . | . | . | . | . | . | . | . | . | .  
--------------------------------------------- 
 
Now, for each key from SMALL, let us look at the array 
location H, whose index is equal to the value of the KEY, i.e. 
at HKEY(KEY). Since there is a separate bucket for each 
possible key value, we are always guaranteed to find the 
address H=KEY. If HKEY(KEY) is missing, let us move the 
satellite S_SAT to H=KEY. Repeating the procedure for the 
rest of the keys yields    
 
---------------------------------------------- 
 H    | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
------+---+---+---+---+---+---+---+---+------- 
 HKEY | . | . | 1 | 2 | . | 3 | . | 4 | . | 5  
---------------------------------------------- 
 
It is a key-indexed table, and it comprises two types of 
entries: empty and occupied. Note that duplicate keys are 
deleted automatically as the table is loaded. If SMALL has no 
satellites or they are of no interest, an occupied entry can be 
marked by moving 1 into the node.     
 
Given a search KEY, how do we look it up? All we have to do 
is to examine the node whose index is equal to KEY. If the 
corresponding location is missing, the key is not in the table. 
If it is occupied, the search has been successful, and the 
node contains either 1 or the related satellite. For example, if 
KEY=1, the search fails since the address 1 is empty. If 
KEY=7, we have to look at the node 07. It is occupied; 
therefore, the key is found, and the node returns the satellite 
value HKEY(7)=4. 
 
The utter simplicity of key-indexing translates into an equally 
simple DATA step implementation. Suppose, for example, 
that our keys are integers ranging from –4E6 to +4E6. The 
range thus naturally defines the bounds of the array HKEY 
representing the key-indexed table.  
 
data match ; 
   array hkey (-4000000 : 4000000) _temporary_ ; 
   do until ( eof1 ) ; 
      set small end = eof1 ; 
      if missing (hkey(key)) then hkey(key)= s_sat; 
   end ; 
   do until ( eof2 ) ; 
      set large end = eof2 ; 
      s_sat = hkey(key) ; 
      if s_sat > . then output ; 
   end ; 
   stop ; 
run ; 
 
The first Do-until loop loads the key-indexed table from 
SMALL; in the second, the table is searched for each key 
coming from LARGE, and matches are output.  
 
Thus, irrespective of a hit or miss, the key-indexed search 
works via a single array reference, without comparing the 
search key to any lookup keys. Of course, no lookup method 
can be simpler and/or run faster. (For example, see the 
performance comparison in [1] showing in part that key-
indexing outperforms presorted MERGE by a factor of 5:1.)   
 
But the most fundamental property of the key-indexed 
search principally distinguishing it from any comparison-
based search is that both “inserting” a key and searching for 
a key is independent of the number of lookup keys. Another 
manner of expressing this fact is to say that both insertions 



and searches in the key-indexed scheme occur in constant 
time, or as O(1).  
 
The question arises: If key-indexing is the fastest 
insertion/searching algorithm, why can we not use it at all 
times and forget about everything else? The answer is: 
Because it is based on the assumption that the lookup keys 
are either integers falling in a limited range or can be 
inexpensively converted to such integers. Our test keys take 
on only as many as 8,000,001 distinct values, so sufficient 
array space can be allocated using about 64 MB of memory. 
Having 80 MB of memory, one can get away with 7-digit 
keys. However, to deal with 9-digit SSN, an array with 1 
billion elements would be needed, which is hardly practical 
even with the modern cheap memories. A 16-digit credit 
card number as a key would make straight key-indexing a 
nightmare. 
 
However, the method is so promising that it is worth 
expanding. To do so, we ought to find a way to keep its 
memory usage at bay. Both the speed of key-indexing and 
its limitations rest upon the following facts: 
 
• The table is directly addressed by keys themselves.     
• The entire set of possible key values is addressable.  
• No comparisons between the search key and lookup 

keys are made. 
 
Thus, the applicability of the pure direct addressing can be, 
in principle, widened in two ways: 
 
1. Keep the key range fully addressable, but address bits 

instead of bytes.   
2. Drop the restrictions that (a) no two keys shall reside in 

one node, and (b) no comparisons between the search 
key and lookup keys are made.    

 
The first approach results in a technique called bitmapping. 
The second path leads to a more versatile hybrid searching 
method known as hashing.  
 
Bitmapping 
 
If the satellite information in SMALL is of no interest, the 
key-indexed table only serves to indicate whether a memory 
node, whose index corresponds to the key value, is empty or 
occupied. Occupied nodes can be populated with 1, and the 
empty ones - initialized to 0. So, if a node whose number is 
the value of KEY contains 1, KEY is in the table; otherwise, it 
is absent. But in order to tell 0 from 1 we need a single bit. 
Yet our key-indexing scheme uses the full memory length of 
a numeric array item, i.e. whole 8 bytes to store a Boolean 
value. If we could make efficient use of bits in such a setting, 
the memory usage could be potentially reduced 64 times!    
 
Ways of doing this and executable code are discussed in 
detail in [1].   
Just like a key-indexed table, a bitmap is a purely direct-
addressed table, and hence runs as O(1) in both insertion 
and searching modes. Bitmapping shines in the niche that 
can be defined as “no-matter-how-many-short-keys”. Bitmap 
is a champion when we only need to rapidly find out if the 
record with a given key should be selected, and if memory 
resources are sufficient for indexing the entire key range into 
the bits of a temporary numeric array. 
 
 
III. DIRECT ADDRESSING BY HASHING: <= V8 
       
Compared to key-indexing, bitmapping merely expands the 
workable universe of keys about 53+ times. Hashing 
methods approach the problem quite differently: They 

eliminate the requirement of a separate slot for each 
possible key and allow some amount of comparisons 
between the search key and lookup keys in the table at the 
final stage of searching.  
 
A simple example is perhaps a good way of making the idea 
clear. Assume that SMALL contains just ten 3-digit keys and 
related satellites (deliberately chosen below as a straight 
enumeration): 
 
data small ;                                                   
   input key s_sat ;                                           
cards ;                                                        
185  00                                                       
971  01                                                        
400  02                                                        
260  03                                                        
922  04                                                        
970  05                                                        
543  06                                                        
532  07                                                        
050  08                                                        
067  09                                                       
;                                                             

run ;            
 
To use key-indexing on such a key, we would allocate a 
[0:999] table and map each key to the node whose number 
is the key value. However, out of 1000 table nodes, only 10 
will be occupied. The rest will idle playing the role of 
placeholders. That is, 99 per cent of the array memory will 
be simply wasted! The crucial question is thus: Can we get 
away with a table only somewhat larger than the number of 
lookup keys, and keep the benefits of direct addressing? 
 
To answer it, let us pick some number HSIZE greater than 
the number of keys N_SMALL in SMALL, for instance, 17, and 
allocate an array sized as HKEY(0:17). Let us agree to call 
the array a hash table, HSIZE - hash table size, and the ratio 
N_SMALL/HSIZE - load factor. Thus, the load factor shows 
the number of lookup keys relative to the total number of 
nodes in the hash table, i.e. the sparsity of the table. In our 
example, the load factor is 0.588, or the table is about 41 
percent sparse.  
 
Now envisage some rapidly-computing function H(KEY) 
taking KEY as an argument and returning an address H into 
HKEY, unique to each key supplied, thus mapping any lookup 
key to its own node: 
 
KEY  H(KEY)  Unique Address in [1:HSIZE]  
 
That would be a perfect hash function.  If it existed, we 
would only have to plug it into the key-indexing code. 
Although such functions are possible, they are quite difficult 
to discover, and once one is found, it can only be used for 
the same set of keys: Adding just an extra key will ruin 
everything. 
 
A less rigid method can be obtained if we let H(KEY) map 
two or more distinct keys to the same location in HKEY: 
 
KEY  H(KEY)  Some Address in [1:HSIZE]  

 
If more than one key is sent to the same address, a collision 
occurs, and we must do something to tell the keys hashing 
to the same address apart. In other words, we have to 
employ a collision resolution policy to distinguish between 
keys hashing to the same location in the process of insertion 
and searching.  
 



Thus, we arrive at the core concept behind hashing. If the 
hash function H(KEY) maps only a few keys per hash bucket 
H spreading the lookup keys evenly among the buckets, we 
can do the following: 
 
1. Use H(KEY) to hash KEY to some address H. 
2. If the content of H is empty, KEY is not in the table, 

since no key has ever hashed to H. 
3. If the address is occupied, search among the few keys 

that have hashed to the bucket H.       
 
Within each address, the search can be organized in a 
number of ways. With a large number of buckets and only a 
few keys per bucket, straight sequential search is the 
simplest and fastest. In the framework of V8-Hash hand-
coded hashing, it is practically the only reasonable way to 
go, although it could conceivably be binary search or 
something else. Most importantly, once the only bucket H 
where KEY can reside has been found, the keys in this 
bucket are searched via a comparison-based algorithm.  
      
Thus, hashing is a typical hybrid algorithm: It combines 
direct addressing with a method based on comparisons 
between keys in its final key-seeking stage. The average 
number of keys mapping to any hash node equals 
N_SMALL/HSIZE, i.e. the load factor. If the hash table is not 
full and the keys are spread uniformly, the average number 
of key comparisons required to find or reject a key is less 
than 1. Also, searching for a key should be the faster, the 
sparser the table is. So, to make a good practical use of a 
hash table, we ought to: 
 
1. Choose a proper hash function H(KEY). 
2. Find an efficient way of resolving collisions.  
 
A good hash function apparently must:  
  
1. Be rapidly computable. 
2. Distribute lookup keys uniformly over the table. 
3. Map them in the [0:HSIZE-1] range.  
 
Among a number of techniques conforming to these 
requirements, the simplest is the division method: 
 
H = MOD (KEY, HSIZE) ; 
 
The number theory tells us that if HSIZE is a prime number 
far from a power of 2, MOD tends to spread the keys 
uniformly. Let us see how this would work for our sample set 
of 10 keys. If we choose the “target” load factor as 0.625 
and divide it into the number of keys, we obtain 16. The first 
prime number greater or equal to 16 is 17, so let us select 
HSIZE=17. (The actual load factor is now 10/17 = 0.588.) 
So, we could allocate the table as 
 
ARRAY HKEY (0:17) _TEMPORARY_ ; 
 
To get a hash address, KEY is divided by HSIZE=17, and the 
remainder H is computed. H points to the H-th slot in the 
table where KEY must be inserted. Repeating this operation 
for all test keys yields the following:  
 
H 
--------------- 
00    .   .   . 
01  970   .   . 
02  971   .   . 
03    .   .   . 
04  922   .   . 
05  260 532   . 
06    .   .   . 
07    .   .   . 
08    .   .   . 

09  400   .   . 
10    .   .   . 
11    .   .   . 
12    .   .   . 
13    .   .   . 
14    .   .   . 
15  185   .   . 
16  543 050 067 
17    .   .   . 
---------------  
 
The keys 970, 971, 922, 400, and 185 all map to their slots 
in HKEY one-to-one. The keys 260 and 532 produce a single 
collision at the address 05, and the keys 543, 050, and 067 
result in a double collision in the node 16. If this table is to 
be stored in memory and searched, the collisions at the 
locations 05 and 16 have to be resolved.  
 
No matter how good a hash function is, some keys are very 
likely to hash to the same addresses, so we will have to 
resolve collisions. This is another point at which hashing 
radically deviates from pure direct addressing, where keys 
are not stored in the table itself. With hashing, the keys 
themselves reside in the table, because they may need to be 
compared to a search key. Collision resolution policies differ 
in the ways the colliding keys are stored, linked as being 
mapped to the same hash address, and traversed.  
 
Collision Resolution: Separate Chaining 
 
One way of resolving collisions suggests itself naturally once 
we cast a rapid glance at the distribution of our 10 keys 
among the addresses of the hash table already shown in the 
previous section. Keys mapped to each occupied address 
form visible “chains”. If an address is uncontested, the chain 
consists of a single key or no keys at all if it is empty. 
Making use of such chains to resolve collisions is thus called 
separate chaining. There are two ways the chains of keys 
can be utilized in terms of the SAS DATA step. 
 
First, the keys comprising the chains could be stored outside 
the table by placing them in the occurrences of a two-
dimensional array. However, this may well cause very poor 
memory utilization. Suppose we have 100,000 keys in 
SMALL and map all but one of them so that no address 
contains more than, 2 to 4 keys, and a single unlucky 
address at which a whole 10 keys collide. In this case, we 
will be forced to create a 2-dimensional array sized as 
[0:HSIZE , 0:9] to resolve the collisions. Even with the load 
factor 1, it would need 10 times the memory the keys 
themselves would use.  
 
In V8-Hash, efficient separate chaining cannot by organized 
head-on because arrays are allocated at compile time. In 
other words, we cannot create a dynamic structure attached 
to each hash bucket H (such as a link list or tree) that would 
grow each time we need to add a key by the amount of 
memory needed to accommodate the key and its satellite(s). 
One reason we mention something not possible to do is that 
it is exactly what V9-Hash makes possible to achieve. 
Therefore, we will return to the separate chaining later in the 
V9-Hash section. 
   
Meanwhile in V8-Hash, the problem is solved along the lines 
of the Russian proverb “Gol na vydumki khitra” (“That who 
lacks resources gets ingenious”). By changing the way of 
memory allocation from sequential to linked, we can arrive 
at an extremely elegant collision resolution policy called 
coalesced list chaining, which is both very fast and 
reasonably memory-efficient. The technique is described at 
length in [1, 2]; an interested reader is more than welcome 
to explore its intricacies.      
 



In this paper, we will discuss the simplest collision resolution 
policy called open addressing with linear probing. Its 
painstaking description can be found in [1, 2]. Below, we will 
take a look at it, sufficient to see how V8-Hash may 
approach the collision resolution problem in principle.   
 
Collision Resolution: Linear Probing  
 
The main idea behind open addressing is as follows. Lookup 
keys are stored in the hash table itself. Suppose we have 
KEY to be loaded. First, hash it: 
 
H = MOD(KEY, HSIZE) ; 
 
If H points to an empty slot, place KEY there, else we have a 
collision. In this case, compare KEY with the key already in 
H. If the keys are equal, the current key is a duplicate, so we 
can either discard it or consider it just another key, 
depending on specifications. If duplicate keys are to be 
eliminated, get the next key; otherwise find a different slot 
for KEY. Step up the table one or more times one node at a 
time by adding 1 to H. The maximum address to which KEY 
can hash is HSIZE-1. So, if H=HSIZE, we are out of range 
[0:HSIZE-1]. To get back there, set H=0 and continue this 
wrap-around cycle until having found an empty node and 
insert the colliding key there. In this fashion, the table is 
“probed” linearly using a fixed probe decrement C=1; hence 
the name.     
 
Since we have HSIZE+1 nodes in the table, but can only 
address HSIZE nodes from 0 to HSIZE-1, at least 1 location 
in the table will always be empty, thus preventing the wrap-
around process from iterating infinitely. Inserting our ten 
sample keys into the table in this manner results in the 
following: 
 
H     HKEY[H]    HSAT[H] 
------------------------ 
00        050         88 
01        970         55 
02        971         11 
03        067         99 
04        922         44 
05        260         33 
06        532         77 
07          .          . 
08          .          . 
09        400         22 
10          .          . 
11          .          . 
12          .          . 
13          .          . 
14          .          . 
15        185         00 
16        543         66 
17          .          . 
-------------------------------- 
  
The keys 185, 971, 400, 260, 922, 970, and 543 all hash 
without collisions to the locations 15, 02, 09, 05, 04, 01, and 
16 respectively. They get inserted into the table together 
with their satellites without contention. However, the next 
key, 532, hashes to H=05 already occupied by 260. 
Incrementing H by 1 results in H+1=06. Since the node 06 is 
empty, we place the key 532 and its satellite at H=6. The 
next key, 050, hashes to H=16, but it is already taken up by 
543. Incrementing H by 1 results in 17, which is beyond the 
hashing range [0:16]. So, we go back to the beginning of the 
table by setting H=00. Since this node is empty, we place 
050 at H=00. The last key, 067, also claims the spotlight at 
H=16. Just like with 050, we go up by one address, have to 
wrap to H=00, which now is occupied by 050. Stepping up 

the table, we find an empty node at H=03, which is where 
KEY=067 and its satellite 99 get inserted.  
 
Now the above of loading the table suggests the way of 
searching it. If a search KEY hashes to an empty node, it is 
not in the table, period. If the node is not empty, it may or 
may not be in the table, so we step up the table until 
bumping into an empty slot. What we do before such a slot is 
encountered depends on whether the duplicate keys and 
satellites from SMALL are to be extracted or not. If they are, 
go all the way to the missing slot picking up all lookup keys 
equal to the search key (and their satellites) along the way. 
If not, stop at the very first instance when a matching key is 
found. If we have reached the end of the cluster without 
encountering a matching key, it is not in the table.    
   
From these simple examples, it should be clear how linear 
probing can reduce the number of probes a comparison-
based search requires. In the worst case scenario for the 
table above, linear probing examines 5 keys until it either 
finds or rejects a search key. However, the number of 
comparisons per average hit/miss search will be close to 1. 
Moreover, it will remain the same if we have 1 million lookup 
keys and about 1.7 million nodes, i.e. as long as the load 
factor remains the same. Therefore, although hashing does 
allow some key comparisons in the final stage of the 
searching, lookups and insertions occur in O(1) time. 
(Compare with the binary search with 4 comparisons for 
N=10, and 20 comparisons for N=1,000,000.) 
 
The simplicity of the linear probing leads to simple code: 
 
%let nodupes =  1 ; *0 if dupes to be pulled ;                 
                                                              

data match (keep = key s_sat l_sat) ;                          
  retain nodupes &nodupes.. ;                                 

   array hkey (0 : &hsize) _temporary_ ;                      
  array hsat (0 : &hsize) _temporary_ ;                       

   do until ( eof1 ) ;                                         
     set small end = eof1 ;                                   

      do h = mod (key, &hsize) by +1 ;                         
        if h = &hsize then h = 0 ;                            
        if hkey(h) = key and nodupes then leave ;             
        if hkey(h) = . then do ;                              
           hkey(h) = key ;                                    
           hsat(h) = s_sat ;                                  
           leave ;                                            
        end ;                                                 
     end ;                                                    
  end ;                                                       
  do until ( eof2 ) ;                                         

      set large end = eof2 ;                                  
      do h = mod (key, &hsize) by +1 
           until ( hkey(h) = . ) ;                            

         if h = &hsize then h = 0 ;                            
        if hkey(h) = key then do ;                            
           s_sat = hsat(h) ;                                  
           output ;                                           
           if nodupes then leave ;                            
        end ;                                                 
     end ;                                                    
  end ;                                                       
  stop ;                                                      

run ;                  
 
If the NODUP parameter is set to false, all the satellites 
corresponding to duplicate keys in SMALL are extracted, else 
only the first one in order is picked. 
 
The main advantage of this scheme is its profound simplicity. 
And if the table is sparse enough, it performs very well. As a 
rule of thumb, the linear probing will do the hashing job just 
right with load factors 0.5 or less, i.e. if the table is more 
than half sparse. As it gets fuller, performance deteriorates 



because of the primary clustering. Trying to find a place for a 
colliding key, we fill out the very first empty location we 
come across. Thus, the groups of adjacent occupied 
addresses tend to aggregate, forming clusters of keys, which 
in turn can bridge together forming bigger clusters. For an 
example, look at the addresses [00:06] in our sample table 
above. So, if the table is rather full, we may eventually have 
to travel practically over the entire table before finding an 
empty location, thus degenerating hashing into a sequential 
search.  
 
The problem can be alleviated by stepping through the table 
more than one node at a time, i.e. making the probe 
increment greater than 1. Aided by a couple of tricks from 
the number theory, it leads to a method called open 
addressing with double hashing that eliminates primary 
clustering, so the same speed can be achieved in a fuller 
table, which results in better memory utilization. For a 
detailed discussion of the double hashing and its SAS 
implementation, see [1].   
 
Non-Integer Keys 
 
Test results [1] show that hashing performs admirably by 
any account regardless of the collision resolution policy. 
However, above examples implied that the keys were 
numeric and natural. How do we hash them if they are not? 
 
Let us note first that because in its final stage, hashing is 
comparison based, it renders the nature of the keys non-
critical. Both hashes and traversals are used merely to 
minimize the number of comparisons necessary to carry out 
a search, yet the final hit-or-miss decision (if the hash 
address is not empty) is made by comparing some lookup 
keys in the table to the search key. 
 
Therefore, we only have to figure out how to devise the hash 
function if the key is not a non-negative integer. It must 
basically satisfy simple rules:  
 
• Hashing should involve as much of the key information 

as possible. 
• It must produce an integer in [0:HSIZE-1] range. 
 
Let us consider a number of distinct practical situations. If 
the lookup keys are fractional signed SAS numbers, we can 
simply rescale the key by multiplying by a suitable integer 
constant and/or adding a constant, then applying the MOD 
function as usual. If the lookup keys are digit strings 
(character variables whose values consist of digits only) is a 
simple matter of applying a standard numeric informat. For 
example, for a 16-digit string, MOD(INPUT(KEY,16.),HSIZE) 
will work just fine. Short digit strings (1 to 8 bytes long) can 
be hashed faster as a character variable in general (see 
below).           
 
Arbitrary Character Keys 
 
Numerous techniques have been developed to hash arbitrary 
character keys [2, 3, 4]. Almost all of them are based on 
breaking a character key apart and then involving the 
individual bytes into a sort of computation resulting in an 
integer in the range [0:HSIZE-1]. However, in SAS sub-
stringing and concatenation are rather slow. Instead, we can 
let call for an integer binary informat to do the job: 
 
H =  MOD (INPUT(KEY,PIBw.), HSIZE) ;  
 
In a single shot, this obviates sub-stringing and converts KEY 
in to a (large) number that can be divided by HSIZE. The 
method has its limitations (see [1] for details). However, it 
works admirably for character keys more or less 

discriminated by their W first characters. If the leading W 
bytes tend to be blank, the LEFT function helps mitigate the 
situation.       
 
Let us see, for example, how our linear probing would look if, 
say, we had KEY as a 9-byte character variable. First, the 
hash array HKEY must now be defined with the appropriate 
data type as $9, while the satellite array stays intact: 
 
   array hkey (0 : &hsize) $9 _temporary_ ;                   
  array hsat (0 : &hsize)    _temporary_ ;                    

 
Secondly, testing for an empty node will be testing for a 
blank. With these amendments, the code for inserting a key 
into the table transforms into 
 
     do h = mod (input(key,pib6.),&hsize) by +1 ;             
        if h = &hsize then h = 0 ;                            
        if hkey(h) = key and nodupes then leave ;             

         if hkey(h) = ‘’ then do ;                             
           hkey(h) = key ;                                    
           hsat(h) = s_sat ;                                  
           leave ;                                            
        end ;                                                 

      end ;                                                   
 
And the code for searching for a key similarly becomes 
 
      do h = mod (input(key,pib6.),&hsize) by +1 
           until ( hkey(h) = ‘’) ;                            
        if h = &hsize then h = 0 ;                            
        if hkey(h) = key then do ;                            
           s_sat = hsat(h) ;                                  

            output ;                                          
           if nodupes then leave ;                            

         end ;                                                 
     end ;                                                    

 
The properties of the algorithm guarantee that both the 
insertion and search run in O(1), i.e. constant, time, as long 
as the load factor stays near 0.5. In other words, if it takes T 
time units to find/reject a search key for N=10 and 
HSIZE=17, it will take T time units to do it for N=100000 
and HSIZE about 170000. The same is true for all direct-
addressing methods. Additionally, if the hash function is 
good, and the table is sparse, both insertions and searches 
appear practically instant. This has a very important 
consequence, as it effectively gives the hash table an 
alternative meaning of an associative array indexed by a key 
of arbitrary type.     
         
Composite Keys 
 
Quite often, a key is composite, i.e. it may consist of an 
arbitrary mixture of numeric and/or character variables. A 
natural inclination is to concatenate the components and 
hash the result. Principally, there is nothing wrong about it; 
however, there are two pitfalls. First, concatenation is slow. 
Secondly, the key components may concatenate into an 
integer lying beyond SAS integer precision. Usually, the 
programmer is left alone with the imagination and 
knowledge of the data. Principally, hashing a combination of 
random bytes selected from all the keys is a reasonable way 
to go. As the number of the components of a composite key 
grows, all V8 hashing schemes quickly become more 
complicated. Aside from devising a decent hash function, we 
have to create a separate parallel array for all component 
keys and compare all the keys to their array counterparts in 
relevant conditionals. That is not to say that it cannot be 
done or should not be done if need be. However, we will see 
that in V9-Hash, the business of hashing data identified by 
composite keys becomes just a breeze.    
 



 
 
IV. DIRECT ADDRESSING BY HASHING:  >= V9 
 
SAS Version 9 has introduced many new features into the 
Data step language. Most of them, expanding existing 
functionality and/or improving its performance, are rather 
incremental. However, one novel feature stands out as a 
breakthrough: Associative arrays of hashes. 
 
V9-Hash Propaedeutics 
 
Perhaps the best way to get a fast taste of this mighty 
addition to the Data step family is to see how it can help 
solve our sample matching problem. Let us assume, for an 
extra kick, that KEY is a character variable of length 9:  
 
data match ( drop = rc ) ;                                                                                           
   length key $9 s_sat 8 ;                                                                                           
                                                                                                                     
   declare AssociativeArray hh () ;    
                                                                                                               
   rc = hh.DefineKey  ( 'key'   ) ;                                                                                  
   rc = hh.DefineData ( 's_sat' ) ;                                                                                 
   rc = hh.DefineDone () ;                                                                                           
                                                                                                                     
   do until ( eof1 ) ;                                                                                               
      set small end = eof1 ;                                                                                         
      rc = hh.add () ;                                                                                               
   end ;                                                                                                             
   do until ( eof2 ) ;                                                                                               
      set large end = eof2 ;                                                                                         
      rc = hh.find () ;                                                                                              
      if rc = 0 then output ;                                                                                        
   end ;                                                                                                             
   stop ;                                                                                                            
run ;                             
 
After all the trials and tribulations of coding hashing 
algorithms by hand, this simplicity looks rather stupefying. 
But how does this code go about its business?  
 
• LENGTH statement gives SAS the attributes of the key 

and data elements before the methods defining them 
could be called.        

• DECLARE AssociativeArray statement declares and 
instantiates the associative array (hash table) HH.     

• DefineKey method describes the variable(s) to serve as 
a key into the table. 

• DefineData method is called if there is a non-key 
satellite information, in this case, S_SAT, to be loaded in 
the table. 

• DefineDone method is called to complete the 
initialization of the hash object.  

• ADD method grabs a KEY and S_SAT from SMALL and 
loads both in the table. Note that for any duplicate KEY 
coming from SMALL, ADD() will return a non-zero code 
and discard the key, so only the first instance the 
satellite corresponding to a non-unique key will be used. 

• FIND method searches the hash table HH for each KEY 
coming from LARGE. If it is found, the return code is set 
to zero, and host S_SAT field is updated with its value 
extracted from the hash table. 

 
If you think it is prorsus admirabile, then the following step 
does the same with even less coding: 
 
data match ;                                                                                                        
   set small point = _n_ ; *get key/data attributes 
;  
  *set small (obs = 1) ;   *this will work, too! ; 
  *set small (obs = 0) ;   *but this will not! ; 
  *if 0 then set small ;   *and neither will this! 
;                                                                                    

                                                              
   dcl hash hh (dataset: 'work.small',hashexp: 10);            
                                                              
  hh.DefineKey  ( 'key'   ) ;                                 
  hh.DefineData ( 's_sat' ) ;                                 
  hh.DefineDone () ;                                          
                                                              
  do until ( eof2 ) ;                                         
     set large end = eof2 ;                                   
     if hh.find () = 0 then output ;                          

   end ;                                                      
  stop ;                                                      

run ;                 
 
Here are notable differences: 
 
• Instead of the LENGTH statement, we can give the 

Define methods key and data attributes by reading a 
record from SMALL. Somewhat surprisingly, is not 
sufficient just to read a descriptor; there must be a 
record read at run-time.   

• DCL can be used as a shorthand for DECLARE.  
• Keyword HASH can be used as an alias instead of 

ASSOCIATIVEARRAY. To the delight of those of us typo-
impaired, it means: When people speak, SAS listens!         

• Instead of loading keys and satellites from SMALL one 
datum at a time, we can instruct the hash table 
constructor to load the table directly from the SAS data 
file SMALL by specifying the file in the hash declaration.   

• The HASHEXP named parameter tells the table 
constructor to allocate 2**10=1024 hash buckets.           

• Assigning return codes to a variable when the methods 
are called is not mandatory. Omitting the assignments 
shortens notation. 

 
Parameter Type Matching 
 
The LENGTH statement in the first version of the step or the 
attribute-extracting SET in the second one provide for what 
is called parameter type matching. When a method, such as 
FIND, is called, it presumes that a variable into which it can 
return a value matches the type and length FIND expects it 
to be.  
 
It falls squarely upon the shoulders of the programmer to 
make sure parameter types do match. The LENGTH or SET 
statements above achieve the goal by giving the table 
constructor  the names of existing Data step variables for the 
key (KEY, length $9) and satellite data (S_SAT, length 8). 
 
Doing so simultaneously creates Data step host variable 
S_SAT, into which the FIND method (and others, as we will 
see later in the iterator section) automatically copies a value 
retrieved from the table in the case of a successful search.                
 
Handling Duplicate Keys 
 
When a hash table is loaded from a data set, SAS acts as if 
the ADD method were used, that is, all duplicate key entries 
but the very first get ignored. Now, what if in the file SMALL, 
duplicated keys corresponded to different satellite values, 
and we needed to pull the last instance of the satellite? 
 
In V8-Hash, duplicate-key entries can be controlled 
programmatically by twisting the guts of the hash code. To 
achieve the desired effect in V9-Hash, we should call the 
REPLACE method instead of the ADD method. But to do so, 
we have to revert back to the loading of the table in a loop 
one key entry at a time: 
 
  do until ( eof1 ) ;                                         
     set small end = eof1 ;                                   

      hh.replace () ;                                          



   end ;                                                                                                             
 
Note that at this point, V9 hashing does not provide a 
mechanism of storing and/or handling duplicate keys with 
different satellites in one and the same hash table. This 
difficulty can be principally circumvented, if need be, by 
discriminating the primary key by creating a secondary key 
from the satellite, thus making the entire composite key 
unique. All the more, it is further aided by the ease with 
which V9-Hash tables can store and manipulate composite 
keys. 
  
Composite Keys and Multiple Satellites 
 
In V8-Hash, creating a composite hash key can be a breeze 
or a pain, depending on the type, range, and length of the 
component keys [1]. But in any case, the programmer needs 
to know the data beforehand and often demonstrate a good 
deal of ingenuity.  
 
V9-Hash makes it all easy. The only thing we need to do in 
order to create a composite key is define the types and 
lengths of the key components and instruct the constructor 
to use them in the specified subordinate sequence. For 
example, if we needed to create a hash table HH keyed by 
variables defined as 
 
length k1 8 k2 $3 k3 8 ; 
 
and in addition, had multiple satellites to store, such as  
 
length a $2 b 8 c $4 ; 
 
we could simply code: 
 
   dcl hash hh () ;                                                                                                  
                                                                                                                     
   hh.DefineKey  ('k1', 'k2', 'k3') ;                                                                                
   hh.DefineData ('a', 'b', 'c') ;                                                                                   
   hh.DefineDone () ;                                         
 
and the internal hashing scheme will take due care about 
whatever is necessary to come up with a hash bucket 
number where the entire composite key should fall together 
with its satellites.  
 
Multiple keys and satellite data can be loaded into a hash 
table one element at a time by using the ADD or REPLACE 
methods. For example, for the table defined above, we can 
value the keys and satellites first and then call the ADD or 
REPLACE method: 
 
   k1 =    1  ; k2 = 'abc' ; k3 =     3  ;                                                                           
   a  =  'a1' ; b  =    2  ; c  = 'wxyz' ;                                                                           
   rc = hh.replace () ;                                                                                              
                                                                                                                     
   k1 =    2  ; k2 = 'def' ; k3 =     4  ;                                                                           
   a  =  'a2' ; b  =    5  ; c  = 'klmn' ;                                                                           
   rc = hh.replace () ;                                                                 
 
Alternatively, these two table entries can be coded as  
 
hh.replace (key: 1, key: 'abc', key: 3,  
            data: 'a1', data: 2, data: 'wxyz') ;                                                    
 
hh.replace (key: 2, key: 'def', key: 4, 
            data: 'a2', data: 5, data: 'klmn') ;          
 
Note that more that one hash table entry cannot be loaded in 
the table at compile-time at once, as it can be done in the 
case of arrays. All entries are loaded one entry at a time at 
execution time. 
 

Perhaps it is a good idea to avoid hard-coding data values in 
a Data step, and instead always load them in a loop either 
from a file or, if need be, from arrays. Doing so reduces the 
propensity of the program to degenerate into what Master 
Ian Whitlock calls “wall paper”, and separates code from 
data.    
 
Hash Parameters as Expressions 
 
The two steps above may have already given a hash-hungry 
reader enough to start munching mind-boggling 
programming opportunities opened by the availability of the 
SAS-prepared hash food without the necessity to cook it. To 
add a little more spice to it, let us rewrite the step yet 
another time: 
 
data match ;                                                   
   set small (obs = 1) ;   
   retain dsn ‘small’ x 10 kn ‘key’ dn ‘s_sat’ ;  
 
  dcl hash hh (dataset: dsn, hashexp: x) ;                    

                                                              
  hh.DefineKey  ( kn ) ;                                      

   hh.DefineData ( dn ) ;                                      
  hh.DefineDone (    ) ;                                      

                                                              
  do until ( eof2 ) ;                                         
     set large end = eof2 ;                                   
     if hh.find () = 0 then output ;                          
  end ;                                                       
  stop ;                                                      

run ;                 
       
As we see, the parameters passed to the constructor (such 
as DATASET and HASHEXP) and methods need not be 
necessarily hard-coded literals. They can be passed as 
valued Data step variables, or even as appropriate type 
expressions. For example, it is possible to code (if need be):  
 
retain args ‘small key s_sat’ n_keys 1e6;  
 
dcl hash hh ( dataset: substr(args,1,5) 
              hashexp: log2(n_keys) 
            ) ;                                               
hh.DefineKey  ( scan(s, 2) ) ;                                 
hh.DefineData ( scan(s,-1) ) ;                                 
hh.DefineDone (    ) ;                                         
                                                              
Hash Iterator  
 
During both hash table load and lookup the sole question we 
need to answer is whether the particular search key is in the 
table or not. The FIND method gives the answer without any 
need for us to know what other keys may or may not be 
stored in the table. However, in a variety of situations we do 
need to know the keys and data already stored in the table 
at the moment. How do we do that?   
 
In V8-Hash it is simple since we had full access to the guts of 
the table: Merrily run through all table nodes sequentially 
and extract the keys and satellites corresponding to all 
occupied nodes. For example, for the linearly probed table, 
all it takes is this: 
 
do h = 0 to &hsize - 1 ; 
   if missing ( hkey (h) ) then continue ; 
   key = hkey (h) ; 
   s_sat = hsat (h) ; 
   < ... further processing ... >  
end ; 
            
In V9-Hash one answer could be to maintain an auxiliary 
array and store a key there every time it is loaded in the 



hash table. Then run through the keys in the array serially, 
using the FIND method to dump the table one key at a time.  
 
Actually, it might make sense if the goal is to retrieve the 
data from the table in which they have been entered. 
However, often times it is much more beneficial to be able to 
dump the table in a sorted key order. For this purpose, SAS 
provides the hash iterator object.  
 
Let us consider a simple program that should make it all 
clear: 
 
data sample ;                                                                                                        
   input k sat ;                                                                                                     
cards ;                                                                                                              
185  01                                                                                                              
971  02                                                                                                              
400  03                                                                                                              
260  04                                                                                                              
922  05                                                                                                              
970  06                                                                                                              
543  07                                                                                                              
532  08                                                                                                              
050  09                                                                                                             
067  10                                                                                                              
 ;                                                                                                                  
run ;                                                                                                                
                                                                                                                     
data _null_ ;                                                                                                        
   set sample point = _n_ ;                                                                                          
                                                                                                                     
   dcl hash  hh ( dataset: 'sample', 
                      hashexp: 8       , 
                      ordered: 1        ) ;                                                                      
   dcl hiter hi ( 'hh' ) ;                                                                                          
                                                                                                                     
   hh.DefineKey  ( 'k'         ) ;                                                                                  
   hh.DefineData ( 'sat' , 'k' ) ;                                                                                   
   hh.DefineDone () ;                                                                                                
                                                                                                                     
   do rc = hi.first () by 0 while ( rc = 0 ) ;                                                                       
      put k = z3. +1 sat = z2. ;                                                                                     
      rc = hi.next () ;                                                                                              
   end ;                                                                                                             
                                                                                                                     
   do rc = hi.last () by 0 while ( rc = 0 ) ;                                                                        
      put k = z3. +1 sat = z2. ;                                                                                     
      rc = hi.prev () ;                                                                                              
   end ;                                                                                                             
   stop ;                                                                                                           
run ;                                                 
 
We see that now the hash table is instantiated with the non-
zero option ORDERED. Without such arrangement, the 
subsequent iterator object declaration 
 
dcl hiter hi ( 'hh' ) ;                                                                                              
      
would fail. Note that the hash object symbol name must be 
passed to the iterator as a character string, either hard-
coded as above or as a character expression resolving to the 
symbol name of a declared hash object, in this case, “HH”. 
After the iterator HI has been successfully instantiated, it can 
be used to fetch entries from the hash table in a sorted order 
by key. 
 
To retrieve hash table entries in an ascending order, we 
must first point to the entry with the smallest key. This is 
done by the method FIRST: 
 
rc = hi.first () ; 
 
where HI is the name we have assigned to the iterator. A 
successful call to FIRST fetches the smallest key into the 
host variable K and the corresponding satellite - into the host 

variable SAT. Once this is done, each call to the NEXT 
method will fetch the hash entry with the next key in 
ascending order. When no keys are left, the NEXT method 
returns RC > 0, and the loop terminates. Thus, the first loop 
will print in the log: 
 
k=050  sat=09 
k=067  sat=10 
k=185  sat=01 
k=260  sat=04 
k=400  sat=03 
k=532  sat=08 
k=543  sat=07 
k=922  sat=05 
k=970  sat=06 
k=971  sat=02 
 
Inversely, the second loop retrieves table entries in 
descending order by starting off with the call to the LAST 
method fetching the entry with the largest key. Each 
subsequent call to the method PREV extracts an entry with 
the next smaller key until there are no more keys to fetch, at 
which point PREV returns RC > 0, and the loop terminates. 
Therefore, the loop prints: 
 
k=971  sat=02 
k=970  sat=06 
k=922  sat=05 
k=543  sat=07 
k=532  sat=08 
k=400  sat=03 
k=260  sat=04 
k=185  sat=01 
k=067  sat=10 
k=050  sat=09                       
 
An alert reader might be curious why the key variable had to 
be also supplied to the DefineData method? After all, each 
time the DO-loop iterates, the iterator points to a new key 
and fetches a new key entry. The problem is that the host 
key variable K is updated only once, as a result of the FIRST 
or LAST method call. Calls to PREV and NEXT methods do not 
update the host key variable. However, a satellite hash 
variable does! So, if in the step above, it had not been 
passed to the DefineData method as an additional argument, 
only the key values 050 and 971 would have been printed. 
 
At this point, it is not clear whether it is a design feature or 
something that will be addressed when V9 hashing will 
emerge from the experimental stage and go real production. 
Either way, it can always be circumvented by the trick shown 
above.     
   
Iterator Programming Example: Array Sorting 
 
The ability of a hash iterator to rapidly retrieve hash table 
entries in order is an extremely powerful feature which will 
surely find a lot of use in Data step programming.  
 
The first iterator programming application that springs to 
mind immediately is using its key ordering capabilities to sort 
another object. The easiest and most apparent prey is a SAS 
array. Note, though, that since a V9 hash table cannot hold 
duplicate keys, the arrays sorted below using the first array 
A as a key and the second array B - as its satellite - will be 
effectively unduplicated. That is, after each sorting loop, the 
array A will be sorted from lbound(A) to 
lboound(A)+n_unique (in this case, n_unique=86507):        
 
data _null_ ;                                                  
   array a (-100000 : 100000) _temporary_ ;                    
   array b (-100000 : 100000) _temporary_ ;                    
   do j = lbound (a) to hbound (a) ;                           
     a (j) = ceil ( ranuni (1) * 1e5 ) ;                      



      b (j) = j ;                                                                                                    
   end ;                                                                                                             
   length ka 8 sb 8 ;                                                                                                
   declare hash  hh (hashexp: 0, ordered: 1 ) ;                                                                      
   declare hiter hi ( 'hh' ) ;                                                                                       
   hh.DefineKey     ( 'ka'        ) ;                                                                                
   hh.DefineData    ( 'ka' , 'sb' ) ;                                                                                
   hh.DefineDone    () ;                                                                                            
   do j = lbound(a) to hbound(a) ;                                                                                   
      ka = a (j) ;                                                                                                  
      if hh.check () = 0 then continue ;                                                                             
      sb = b (j) ;                                                                                                   
      n_unique ++ 1 ;                                                                                                
      hh.add () ;                                                                                                    
   end ;                                                                                                             
 * sort ascending ;                                                                                                  
   rc = hi.first () ;                                                                                                
   do j = lbound (a) by 1 while ( rc = 0 ) ;                                                                         
      a (j) = ka ;                                                                                                   
      b (j) = sb ;                                                                                                   
      rc = hi.next () ;                                                                                              
   end ;                                                                                                             
 * sort descending ;                                                                                                
   rc = hi.last() ;                                                                                                  
   do j = lbound(a) by 1 while ( rc = 0 ) ;                                                                          
      a (j) = ka ;                                                                                                   
      b (j) = sb ;                                                                                                   
      rc = hi.prev() ;                                                                                               
   end ;                                                                                                             
   stop ;                                                                                                            
run ;   
 

Note that HASHEXP=0 was chosen. Since it means 2**0=1, 
i.e. a single bucket, we have created a stand-alone 
AVL(Adelson-Volsky & Landis)  binary tree in a Data step, let 
it grow dynamically as it was being populated with keys and 
satellites, and then traversed it to eject the data in a 
predetermined key order.  
 
Just to give an idea about this hash table performance in 
some absolute figures, this entire step runs in about 1.15 
seconds on a desktop 933 MHz computer under XP Pro. The 
time is pretty deceiving, since 85 percent of it is spent 
inserting the data in the tree. The process of sorting 200,001 
entries itself takes only scant 0.078 seconds either direction. 
Increasing HASHEXP to 16 reduces the table insertion time 
by about 0.3 seconds, while the time of dumping the table in 
order remains the same.                                                  
 
DATA Step Component Interface 
 
Now that we have a taste of the V9 hashing, let us consider 
it from a little bit more general viewpoint. 
 
In Version 9, the hash table (associative array) introduces 
the first component object accessible via a rather novel 
thingy called DATA Step Component Interface (DSCI). A 
component object is an abstract data entity consisting of two 
distinct characteristics: Attributes and methods.  Attributes 
are data that the object can contain, and methods are 
operations the object can perform on its data. 
 
From the programming standpoint, an object is a black box 
with known properties, much like a SAS procedure. However, 
a SAS procedure, such as SORT or FORMAT, cannot be called 
from a Data step at run-time, while an object accessible 
through DSCI - can. A Data step programmer who wants an 
object to perform some operation on its data, does not have 
to program it procedurally, but only to call an appropriate 
method.        
 
The Hash Object  
 

In our case, the object is a hash table. Generally speaking, 
as an abstract data entity, a hash table is an object providing 
for the insertion and retrieval of its keyed data entries in 
O(1), i.e. constant, time. Properly built V8-Hash direct-
addressed tables satisfy this definition in the strict sense. We 
will see that the V9 hash object satisfies it in the practical 
sense. The attributes of the hash table object are keyed 
entries comprising its key(s) and maybe also satellites.   
 
Before any hash table object methods can be called 
(operations on the hash data performed), the object must be 
declared. In other words, the hash table must be instantiated 
with the DECLARE (DCL) statement, as we have seen above.           
 
The hash table methods are the functions it can perform, 
namely:  
 
• DefineKey. Define a set of hash keys. 
• DefineData. Define a set of hash table satellites. This 

method call can be omitted without harmful 
consequences if there is no need for non-key data in the 
table. Although a dummy call can still be issued, it is not 
required.    

• DefineDone. Tell SAS the definitions are done. If the 
DATASET argument is passed to the table’s definition, 
load the table from the data set.  

• ADD. Insert the key and satellites if the key is not yet in 
the table (ignore duplicate keys). 

• REPLACE. If the key is not in the table, insert the key 
and its satellites. Otherwise overwrite the satellites in 
the table with new ones.  

• FIND. Search for the key. If it is found, extract the 
satellite(s) from the table and update the host Data step 
variables. 

• CHECK. Search for the key. If it is found, just return 
RC=0, and do nothing more.    

 
Data Step Object Dot Syntax 
 
As we have seen, in order to call a method, we only have to 
specify its name preceded by the name of the object followed 
by a period, such as:  
 
hh.DefineKey () 
hh.Find () 
hh.Replace () 
hh.First () 
 
and so on. This manner of telling SAS Data step what to do 
is thus naturally called the Data Step Object Dot Syntax. 
Summarily, it provides a linguistic access to a component 
object’s methods and attributes.  
 
So far, there are but a couple of component objects 
accessible from a Data step through DSCI. However, as their 
number grows, we had better get used to the object dot 
syntax real soon, particularly those dinosaurs among us who 
have not exactly learned this kind of tongue in the 
kindergarten...    
 
V9-Hash: A Peek under the Hood 
 
We have just seen the tip of the V9-Hash hash iceberg from 
the outside. An inquiring mind would like to know: What is 
inside? Not that we really need the gory details of the 
underlying code, but it is instructive to know on which 
principles the design of the internal SAS table is based in 
general. A good driver is always curious what is under the 
hood.  
 
Well, in general, hashing is hashing is hashing - which means 
that it is always a two-staged process: 1) Hashing a key to 



its bucket 2) resolving collisions within each bucket. 
Discussing collision resolution schemes, we had to reject the 
simple straight separate chaining because of the inability to 
dynamically allocate memory one entry at a time, while 
reserving it in advance could result in unreasonable waste of 
memory. 
 
Since V9-Hash is coded in the underlying software, this 
restriction no longer exists, and so separate chaining is 
perhaps the most logical way to go. Its concrete 
implementation, however, has somewhat deviated from the 
classic scheme of connecting keys within each node into a 
link list. Instead, each new key hashing to a bucket is 
inserted into its binary tree. If there were, for simplicity, only 
4 buckets, the scheme might roughly look like this: 
 
     0         1         2         3 
+---------+---------+---------+---------+ 
|    |    |    |    |    |    |    |    | 
|   / \   |   / \   |   / \   |   / \   | 
|  /\ /\  |  /\ /\  |  /\ /\  |  /\ /\  |                 
 
The shrub-like objects inside the buckets are AVL (Adelson-
Volsky & Landis) trees. AVL trees are binary trees populated 
by such a mechanism that on the average guarantees their 
O(log(N)) search behavior regardless of the distribution of 
the key values.  
 
The number of hash buckets is controlled by the HASHEXP 
parameter we have used above. The number of buckets 
allocated by the hash table constructor is 2**HASHEXP. So, 
if HASHEXP=8, HZISE=256 buckets will be allocated, or if 
HASHEXP=16, HSIZE=65536. As of the moment, it is the 
maximum. Any HASHSIZE specified over 16 is truncated to 
16.  
 
Let us assume HASHEXP=16 and try to see how, given a 
KEY, this structure facilitates hashing. First, a mysterious 
internal hash function maps the key, whether is it simple or 
composite, to some bucket. The tree in the bucket is 
searched for KEY. If it is not there, the key and its satellite 
data are inserted in the tree. If KEY is there, it is either 
discarded when ADD is called, or its satellite data are 
updated when REPLACE is called.     
 
Like in V8-Hash, how fast all this occurs depends on the 
speed of search. Suppose that we have N=2**20, i.e. about 
1 million keys. With HSIZE=2**16, there will be on the 
average 2**4 = 16 keys hashing to one bucket. Since N > 
HSIZE, the table is overloaded, i.e. its load factor is greater 
than 1. However, binary searching the 16 keys in the AVL 
tree requires only about 5 keys comparisons. If we had 10 
million keys, it would require about 7 comparisons, which 
practically makes almost no difference.   
 
Thus the V9 hash table behaves as O(log(N/HSIZE)). While it 
is not exactly O(1), it can be considered such for all practical 
intents and purposes, as long as N/HSIZE is not way over 
100. Thus, by choosing HASHEXP judiciously, it is thus 
possible to tweak the hash table performance to some 
degree and depending on the purpose.   
 
For example, if the table is used primarily for high-
performance matching, it may be a good idea to specify the 
maximum HASHEXP=16, even if some buckets end up 
unused. From our preliminary testing, we have not been able 
to notice any memory usage penalty exacted by going to the 
max, all the more that as of this writing, the Data step does 
not seem to report memory used by an object called through 
the DSCI. At least, experiments with intentionally large hash 
tables show that the memory usage reported in the log is 
definitely much smaller than the hash table must have 

occupied, although it was evident from performance that the 
table is completely memory-resident, and the software 
otherwise has no problem handling it. However, with several 
thousand keys at hand there is little reason to go over 
HASHEXP=10, anyway. Also, if the sole purpose of using the 
table is to eject the data in a key order using a hash iterator, 
even a single bucket at HASHEXP=0 can do just fine, as we 
saw earlier with the array sorting example. On the other 
hand, if there is no need for iterator processing, it is better 
to leave the table completely iterator-free by not specifying a 
non-zero ORDERED option. Maintaining an iterator over a 
hash table obviously requires certain overhead.    
 
Hash Table as a Dynamic Data Step Structure 
 
V9 hash table represent the first ever dynamic Data step 
structure, i.e. one capable of acquiring memory and growing 
at run-time. There are a number of common situations in 
data processing when the information needed to size a data 
structure becomes available only at execution time. SAS 
programmers usually solve such problems either by pre-
processing data, i.e. passing through the data more than 
once, or allocating memory resources for the worst case 
scenario. As more programmers become familiar with the 
possibilities this dynamic structure offers, they will be able to 
avoid resorting to many old kludges.  
 
What we cannot do dynamically (at least, for now) is to 
make a hash table shrink by deleting its nodes. However, it 
is hardly necessary. Firstly, if a keyed entry has been 
inserted in the table, there must be a use for it for as long as 
the table exists. Secondly, if the table is no longer needed, it 
can be simply wiped out by the DELETE method: 
 
rc = hh.Delete () ; 
 
This will eliminate the table from memory for good, but not 
its iterator! As a separate object related to a hash table, it 
has to be deleted separately: 
 
rc = hi.Delete () ;   
 
If at some point of a Data step program there is a need to 
start building the same table from scratch again, remember 
that the compiler must see only a single definition of the 
same table by the same token as it must see only a single 
declaration of the same array (and if the rule is broken, it 
will issue the same error message, e.g.: “Variable hh already 
defined”). Also, like in the case of arrays, the full declaration 
(table and its iterator) must precede any table/iterator 
references. In other words, this will NOT compile because of 
the repetitive declaration: 
 
20   data _null_ ; 
21      length k 8 sat $11 ; 
22 
23      dcl hash  hh  ( hashexp: 8, ordered: 1 ) ; 
24      dcl hiter hi  ( 'hh'  ) ; 
25      hh.DefineKey  ( 'k'   ) ; 
26      hh.DefineData ( 'sat' ) ; 
27      hh.DefineDone () ; 
28 
29      hh.Delete () ; 
30 
31      dcl hash  hh  (hashexp: 8, ordered: 1 ) ; 
                      - 
                      567 
ERROR 567-185: Variable hh already defined. 
 
32      dcl hiter  hi  ( 'hh'  ) ; 
                       - 
                       567 
ERROR 567-185: Variable hi already defined. 
 



And this will not compile because at the time of the DELETE 
method call, the compiler has not seen HH yet: 
 
39   data _null_ ; 
40      length k 8 sat $11 ; 
41      link declare ; 
42      rc = hh.Delete() ; 
             --------- 
             557 
             68 
ERROR 557-185: Variable hh is not an object. 
ERROR 68-185: The function HH.DELETE is unknown, or 
cannot be accessed. 
 
43      link declare ; 
44      stop ; 
45      declare: 
46         dcl hash  hh  ( hashexp: 8, ordered: 1 ) 
; 
47         dcl hiter hi  ( 'hh'  ) ; 
48         hh.DefineKey  ( 'k'   ) ; 
49         hh.DefineData ( 'sat' ) ; 
50         hh.DefineDone () ; 
51      return ; 
52      stop ; 
53   run ; 
 
However, if we do not dupe the compiler and reference the 
object after it has seen it, it will work as designed: 
 
199  data _null_ ; 
200     retain k 1 sat 'sat' ; 
201     if 0 then do ; 
202        declare: 
203        dcl hash  hh  ( hashexp: 8, ordered: 1 ) 
; 
204        dcl hiter hi  ( 'hh'  ) ; 
205        hh.DefineKey  ( 'k'   ) ; 
206        hh.DefineData ( 'sat' ) ; 
207        hh.DefineDone () ; 
208        return ; 
209     end ; 
210     link declare ; 
211        rc =  hi.First  () ; 
212        put k= sat= ; 
213        rc = hh.Delete () ; 
214        rc = hi.Delete () ; 
215     link declare ; 
216        rc = hh.Delete () ; 
217        rc = hi.Delete () ; 
218     stop ; 
219  run ; 
 
k=1 sat=sat 
 
Of course, the most natural and trouble-free way to declare 
a table, process it, free, and declare the same table from 
scratch again is to place the entire process in a loop. This 
way, the declaration is easily placed ahead of references, 
and the compiler sees the declaration just once. In a 
moment, we will see an example of doing exactly that. 
 
Dynamic DATA Step Data Dictionaries 
 
The fact that hashing supports searching (and thus retrieval 
and update) in constant time makes it ideal for using a hash 
table as a dynamic Data step data dictionary. Suppose that 
during DATA step processing, we need to memorize certain 
key elements and their attributes on the fly, and at different 
points in the program, answer the following: 
 
1. Has the current key already been used before? 
2. If it is new, how to insert it in the table, along with its 

attribute, in such a way that the question 1 could be 
answered as fast as possible in the future? 

3. Given a key, how to rapidly update its satellite? 

4. If the key is no longer needed, how to delete it? 
 
V8-Hash programming examples showing how key-indexing 
can be used for this kind of task are given in [1]. Here we 
will take an opportunity to show what V9-Hash can do to 
help an unsuspecting programmer. Imagine that we have 
input data of the following arrangement: 
 
data sample ;                                                  
   input id transid amt ;                                     
  cards ;                                                     

1  11   40                                                     
1  11   26                                                     
1  12   97                                                    
1  13    5                                                     
1  13    7                                                     
1  14   22                                                     
1  14   37                                                     
1  14    1                                                     
1  15   43                                                     
1  15   81                                                     
3  11   86                                                     
3  11   85                                                    
3  11    7                                                     
3  12   30                                                    
3  12   60                                                     
3  12   59                                                     
3  12   28                                                     
3  13   98                                                     
3  13   73                                                     
3  13   23                                                     
3  14   42                                                     
3  14   56                                                     
;                                                              
run ;                   
 
The file is grouped by ID and TRANSID. We need to 
summarize AMT within each TRANSID giving SUM, and for 
each ID, output 3 transaction IDs with largest SUM. Simple! 
In other words, for the sample data set, we need to produce 
the following output: 
 
id    transid    sum 
-------------------- 
 1       15      124 
 1       12       97 
 1       11       66 
 3       13      194 
 3       11      178 
 3       12      177 
 
 Usually, this is a 2-step process, either in the foreground or 
behind the scenes (SQL). Since a V9 hash table can eject 
keyed data in a specified order, it can be used to solve the 
problem in a single step: 
 
data id3max (keep = id transid sum) ;                          
  length transid sum 8 ;                                      

   dcl hash  ss  (hashexp: 3, ordered: 1) ;                   
  dcl hiter si  ( 'ss' ) ;                                    

   ss.defineKey  ( 'sum'            ) ;                        
  ss.defineData ( 'sum', 'transid' ) ;                        

   ss.defineDone () ;                                        
  do until ( last.id ) ;                                      
     do sum = 0 by 0 until ( last.transid) ;                  
        set sample ;                                          

         by id transid ;                                      
        sum ++ amt ;                                          

      end ;                                                   
     rc = ss.replace () ;                                     

   end ;                                                      
  rc = si.last () ;                                           

   do cnt = 1 to 3 while ( rc = 0 ) ;                          
     output ;                                                 
     rc = si.prev () ;                                        

   end ;      



run ;                                      
   
The inner Do-Until loop iterates over each BY-group with the 
same TRANSID value and summarizes AMT. The outer Do-
Until loop cycles over each BY-group with the same ID value 
and for each repeating ID, stores TRANSID in the hash table 
SS keyed by SUM. Because the REPLACE method is used, in 
the case of a tie, the last TRANSID with the same sum value 
takes over. At the end of each ID BY-group, the iterator SI 
fetches TRANSID and SUM in the order descending by SUM, 
and top three retrieved entries are written to the output file. 
Control is then passed to the top of the implied Data step 
loop where it encounters the table definition. It causes the 
old table and iterator to be dropped, and new ones - defined. 
If the file has not run out of records, the outer Do-Until loop 
begins to process the next ID, and so on.                         
 
CONCLUSION: V8-Hash + V9-Hash 
 
It has been proven through testing and practical real-life 
application that direct-addressing methods can be a great 
efficiency tool if used wisely. Before the advent of Version 9, 
the only way of implementing these methods in a SAS Data 
step was coding them by hand. This is what we term V8-
Hash in this paper. While it is a lot of fun and produces great 
results, it is primarily efficient from the standpoint of the 
machine time. The main principles of V8-Hash are 
programming ingenuity, algorithmic knowledge, and “thou 
shalt know thy data”, “thy data” being chiefly the properties 
of the hash keys involved in the process.  
 
V9-Hash provides an access to algorithms of the same type 
and hence with the same high-performance potential via an 
object. While being aware of its guts does not hurt, it is not 
necessary for a programmer to know the details, for great 
results - on par or better than those of V8-Hash - can be 
achieved just by following syntax rules and learning which 
methods cause the black box called a hash table to produce 
coveted results. Thus, along with improving computer 
efficiency, V9-Hash also makes great strides in programming 
efficiency. 
  
If this is the case, does it mean that V9-Hash makes V8-
Hash and custom hash coding obsolete?  
 
Not necessarily. Surely it will prompt some folks, who have 
never touched hashing because it has not been a canned 
function, to start using it now. However, those very folks are 
likely to discover that a sizeable direct-addressing territory is 
better covered by the traditional V8-Hash hand coding. 
Below is a short V8-Hash vs. V9-Hash comparison list 
intended to outline the areas where one or the other 
dominate and/or coexist: 
 
• Simple numeric key falling in a limited range. SAS date 

and time values are good examples. This is the area 
where V8-Hash key-indexed search completely 
dominates the competition both in computer and 
programming efficiency.     

• Simple numeric key with the range up to 9 digits; no 
satellites needed. Bitmapping is king.  

• Simple numeric key or short (up to 8-10 bytes) 
character key. Both generations do well. If ultimate 
speed is the issue, hand-coding still does better, but not 
by much. V9-Hash may have the advantage of coding 
simplicity. 

• Composite keys. This is mainly V9-Hash territory. V8-
Hash is better if the keys can be rapidly combined in a 

short integer. If the composite key is of the mixed type, 
V9-Hash is king.  

• Retrieving data by key from a hash table in order. V8-
Hash can provide such functionality only through array 
sorting. V9-Hash provides a hash iterator object 
specifically for this purpose, and once the data are in the 
table, it works very fast.                           

• Storing and handling duplicate key entries in a hash 
table. V8-Hash is more flexible here. V9-Hash only lets 
you control which duplicate takes over, but its table 
must be keyed uniquely. 

• Dynamic Data step dictionaries. V9-Hash is the ideal tool 
here. Its table grows at run-time as new entries are 
added, so it is unnecessary to allocate giant memories 
beforehand “just in case”.  

 
Finally, it should be noted that at this moment of the Version 
9 history, the hash object and its methods are an 
experimental feature. To the extent of our testing, they do 
work as documented. From the programmer’s viewpoint, 
some aspects that might need attention are: 
 
• Parameter type matching in the case where a table is 

loaded from a data set. If the data set is named in the 
step, the attributes of hash entries should be available 
from its descriptor. 

• Memory usage reporting. Currently the memory 
occupied by a hash table appears to not be reported in 
the log.  

• An iterator does not write key values directly into a host 
key variable when the NEXT and PREV methods are 
used. Defining the key variable additionally as a satellite 
data element works but looks awkward.      

 
Putting all this aside, the advent of the V9 hash table as the 
first dynamic Data step structure is nothing short of a long-
time breakthrough. Hashing has always been fun, but it has 
never been as much fun as now.                 
  
SAS is a registered trademark or trademark of SAS Institute, 
Inc. in the USA and other countries.  indicates USA 
registration.  
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