

Table Lookup by Direct Addressing: From V8 to V9

Paul M. Dorfman, Independent Consultant, Jacksonville, FL

ABSTRACT

Table lookup is one of the most, if not the most, important
and frequently performed data processing operations. The
SAS System supports this assertion with a roster of built-in
searching techniques, such as merges, joins, formats,
indexes, and search-specific operators and functions.

It is therefore all the more surprising that until the advent of
Version 9 the fastest, i.e. direct-addressing searching
algorithms, such as hashing and bitmapping, have not been
available in a built-in form. This gap has been partially
covered by SAS programmers crazy enough to hand-code
their own hash-based schemes using the power of the SAS
Language.

In Version 9, however, the situation has finally changed. Not
only has it made direct addressing available in the form of a
built-in hash table (associative array) object, which can be
searched much faster than any other SAS lookup structure,
but with it, Version 9 has also introduced the first truly run-
time dynamic, memory-resident Data step structure.

In this talk, we will get a taste of this new exciting SAS
instrument and some cool things it can help us do. We will
also see that it does not make hand-coded hashing methods
instantly obsolete. Both have their place in a SAS user's
repertoire, the choice depending on the data knowledge and
programming and/or computer efficiency.

I. INTRODUCTION

Table lookup or searching is, practically speaking, the most
common data processing operation. In this respect, the
closest that comes to mind is sorting, but then almost always
the ultimate goal of sorting is to organize a search. SAS
addresses this situation like in no other software package by
providing the programmer with an incredibly rich collection
of built-in searching techniques.

Purposely limiting ourselves, for the time being, by Version
8, we might, for example, think of:

• Conditional (IF-THEN-ELSE) logic and the case (SELECT)

structure
• Search operators, such as IN, LIKE, etc.
• The MERGE statement
• SQL with all its bells and whistles
• Formats and informats
• SAS indexes
• String-searching functions and regular expressions
• Internal in-memory trees implicitly used by class-type

procedures

These instruments embrace a variety of searching situations
and employ a number of various lookup algorithms. Some of
them are designed to operate in memory, others - on disk.
However, all of them (except for the SQXJHSH available
through SQL), have a number of properties in common:

1. They are based on comparing a search key to one or

more keys in the table.
2. In this respect, they (and hence their efficiency) only

differ in the number of key comparisons needed to

discover whether a search key is among the lookup keys
or not.

3. If the number of lookup keys increases N times, the
number of comparisons necessary to locate or reject a
search key increases, in the best case scenario, log2(N)
times.

A principally different searching strategy is employed by the
SQXJHSH method. With SQXJHSH, the number of key
comparisons per act of searching - and thus the speed of the
latter – either no longer depends on the number of lookup
keys or grows with N much slower than log2(N). Looking a
whit forward, such behavior is typical for direct-addressing,
as opposed to key-comparison, lookup methods. In Version 8
and before, SQXJHSH has been the only SAS-supplied direct-
addressing search method, and since it is an SQL-only, no
such method has been available in the Data step.

This shortcoming is in part compensated by the SAS
Language with enough tools to help programmers implement
their own searching methods, if need be, for instance:

• SAS arrays
• Direct SAS file access via the POINT= option
• SASFILE statement allowing to pre-buffer an entire data

set in memory

These tools and/or structures, together with the rest of the
language, are sufficient for implementing just about any
searching algorithm. Of course, techniques based on these
tools are not ready-to-go routines, and they have to be
custom-coded. But by the same token, they are more flexible
and thus often result in routines searching much faster and
using fewer resources.

Hashing Semantics

In the title of the paper, the term “hashing” was used
collectively to denote the whole group of memory-resident
searching methods not primarily based on comparison
between keys, but on direct addressing. Although strictly
speaking, hashing per se is just one of direct-addressing
techniques, using it as a collective term has become
common. Hopefully, it will be clear from the context in which
sense the term is used. Mostly, it will be used in its strict
meaning.

In fact, someone has even had enough time and inspiration
to implement a number of direct-addressing searching
techniques in the Data step and show that they work well
enough in order to be useful! This set of hand-coded direct-
addressing routines, together with a rather painful delving
into their guts, was presented at SUGI 26 and 27 [1, 2]. For
the lack of a better description, let us call them, and
anything that can be derived from them, V8-Hash.

V8-Hash has a number of drawbacks – which we will go on
to discuss later – inevitable for almost any more or less
complex, performance oriented routine coded in a very high-
level language, such as the SAS data step. But by the same
token, it has a number of advantages, primarily: The code is
available, and so it can be tweaked, changed to
accommodate different specifications, retuned, etc.

However, the most important consequence of V8-Hash
activity was that it might have impact on the advent of V9-
Hash that arrived shortly after the game has been joined by
SAS. And lo and behold, in Version 9, we have a present in
the form of an object called associative array, or - yes, you
guessed right! - hash. This object can be used as a canned
box to search data via a direct-addressing algorithm
implemented internally. It is a real breakthrough in more
ways than one.

II. DIRECT-ADDRESSING: PROPAEDEUTICS

To make the discussion more concrete, consider a common task of
matching two data files by a common key. Suppose that an unsorted
SAS data file SMALL contains N_SMALL records with a numeric integer
variable KEY and a satellite variable S_SAT. Another unsorted file
called LARGE, with N_LARGE records also has the variable KEY and a
satellite L_SAT. Assume that 1) LARGE is not sorted and, for whatever
reason, cannot be sorted and 2) there is enough memory to hold the
entire SMALL, or at least KEY and a numeric pointer to its records.

Given these conditions, What is the most efficient way to subset
LARGE based on the values of KEY in SMALL to produce a file
MATCH?

SAS offers a number of ready-to-go tools based on in-
memory table lookup. Just to mention a couple:

1. Compile unduplicated keys from SMALL into a format

using CNTLIN= option, and search it for each KEY read
from LARGE.

2. Load the keys from SMALL into a sorted array and use a
hand-coded binary or interpolation search to look for
each key from LARGE.

Why look for something else? The efficiency and speed of
such methods are principally limited, because they are
comparison-based. It is known that for an arbitrarily
distributed lookup keys, no comparison-based method can
do better than the binary search. The latter, to either find
search key among N lookup keys or reject it, must make no
less than the average of log2(N)+1 comparisons. For
N=1,000,000 it costs 20 comparisons plus computations and
logic. Sometimes it is expressed by saying that the binary
search runs in O(log(N)) time.

Removing key comparisons as the primary basis of searching
could thus be highly beneficial. But is it possible to search for
a key without comparing it with the keys in a lookup table at
least once? A rather paradoxical answer to this question is
“yes”. It is given by a radically different searching philosophy
called direct addressing. And direct addressing finds its pure
expression in key-indexed search.

Key-indexing

The idea is simple. Assume that all keys are 1-digit numbers
from 0 to 9, and SMALL has only 9 records:

OBS | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
------+---+---+---+---+---+---+---+---+---
KEY | 2 | 3 | 5 | 2 | 7 | 9 | 5 | 7 | 3
------+---+---+---+---+---+---+---+---+---
S_SAT | 1 | 2 | 3 | 0 | 4 | 5 | 6 | 9 | 7

Let us create a temporary array HKEY with one node
(location, address) allocated for each possible key value. By
default, SAS will initialize all the buckets to missing values.
HKEY can be thought of as the following table in memory:

H | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
-----+---+---+---+---+---+---+---+---+-------
HKEY | . | . | . | . | . | . | . | . | . | .

Now, for each key from SMALL, let us look at the array
location H, whose index is equal to the value of the KEY, i.e.
at HKEY(KEY). Since there is a separate bucket for each
possible key value, we are always guaranteed to find the
address H=KEY. If HKEY(KEY) is missing, let us move the
satellite S_SAT to H=KEY. Repeating the procedure for the
rest of the keys yields

--
 H | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
------+---+---+---+---+---+---+---+---+-------
 HKEY | . | . | 1 | 2 | . | 3 | . | 4 | . | 5
--

It is a key-indexed table, and it comprises two types of
entries: empty and occupied. Note that duplicate keys are
deleted automatically as the table is loaded. If SMALL has no
satellites or they are of no interest, an occupied entry can be
marked by moving 1 into the node.

Given a search KEY, how do we look it up? All we have to do
is to examine the node whose index is equal to KEY. If the
corresponding location is missing, the key is not in the table.
If it is occupied, the search has been successful, and the
node contains either 1 or the related satellite. For example, if
KEY=1, the search fails since the address 1 is empty. If
KEY=7, we have to look at the node 07. It is occupied;
therefore, the key is found, and the node returns the satellite
value HKEY(7)=4.

The utter simplicity of key-indexing translates into an equally
simple DATA step implementation. Suppose, for example,
that our keys are integers ranging from –4E6 to +4E6. The
range thus naturally defines the bounds of the array HKEY
representing the key-indexed table.

data match ;
 array hkey (-4000000 : 4000000) _temporary_ ;
 do until (eof1) ;
 set small end = eof1 ;
 if missing (hkey(key)) then hkey(key)= s_sat;
 end ;
 do until (eof2) ;
 set large end = eof2 ;
 s_sat = hkey(key) ;
 if s_sat > . then output ;
 end ;
 stop ;
run ;

The first Do-until loop loads the key-indexed table from
SMALL; in the second, the table is searched for each key
coming from LARGE, and matches are output.

Thus, irrespective of a hit or miss, the key-indexed search
works via a single array reference, without comparing the
search key to any lookup keys. Of course, no lookup method
can be simpler and/or run faster. (For example, see the
performance comparison in [1] showing in part that key-
indexing outperforms presorted MERGE by a factor of 5:1.)

But the most fundamental property of the key-indexed
search principally distinguishing it from any comparison-
based search is that both “inserting” a key and searching for
a key is independent of the number of lookup keys. Another
manner of expressing this fact is to say that both insertions

and searches in the key-indexed scheme occur in constant
time, or as O(1).

The question arises: If key-indexing is the fastest
insertion/searching algorithm, why can we not use it at all
times and forget about everything else? The answer is:
Because it is based on the assumption that the lookup keys
are either integers falling in a limited range or can be
inexpensively converted to such integers. Our test keys take
on only as many as 8,000,001 distinct values, so sufficient
array space can be allocated using about 64 MB of memory.
Having 80 MB of memory, one can get away with 7-digit
keys. However, to deal with 9-digit SSN, an array with 1
billion elements would be needed, which is hardly practical
even with the modern cheap memories. A 16-digit credit
card number as a key would make straight key-indexing a
nightmare.

However, the method is so promising that it is worth
expanding. To do so, we ought to find a way to keep its
memory usage at bay. Both the speed of key-indexing and
its limitations rest upon the following facts:

• The table is directly addressed by keys themselves.
• The entire set of possible key values is addressable.
• No comparisons between the search key and lookup

keys are made.

Thus, the applicability of the pure direct addressing can be,
in principle, widened in two ways:

1. Keep the key range fully addressable, but address bits

instead of bytes.
2. Drop the restrictions that (a) no two keys shall reside in

one node, and (b) no comparisons between the search
key and lookup keys are made.

The first approach results in a technique called bitmapping.
The second path leads to a more versatile hybrid searching
method known as hashing.

Bitmapping

If the satellite information in SMALL is of no interest, the
key-indexed table only serves to indicate whether a memory
node, whose index corresponds to the key value, is empty or
occupied. Occupied nodes can be populated with 1, and the
empty ones - initialized to 0. So, if a node whose number is
the value of KEY contains 1, KEY is in the table; otherwise, it
is absent. But in order to tell 0 from 1 we need a single bit.
Yet our key-indexing scheme uses the full memory length of
a numeric array item, i.e. whole 8 bytes to store a Boolean
value. If we could make efficient use of bits in such a setting,
the memory usage could be potentially reduced 64 times!

Ways of doing this and executable code are discussed in
detail in [1].
Just like a key-indexed table, a bitmap is a purely direct-
addressed table, and hence runs as O(1) in both insertion
and searching modes. Bitmapping shines in the niche that
can be defined as “no-matter-how-many-short-keys”. Bitmap
is a champion when we only need to rapidly find out if the
record with a given key should be selected, and if memory
resources are sufficient for indexing the entire key range into
the bits of a temporary numeric array.

III. DIRECT ADDRESSING BY HASHING: <= V8

Compared to key-indexing, bitmapping merely expands the
workable universe of keys about 53+ times. Hashing
methods approach the problem quite differently: They

eliminate the requirement of a separate slot for each
possible key and allow some amount of comparisons
between the search key and lookup keys in the table at the
final stage of searching.

A simple example is perhaps a good way of making the idea
clear. Assume that SMALL contains just ten 3-digit keys and
related satellites (deliberately chosen below as a straight
enumeration):

data small ;
 input key s_sat ;
cards ;
185 00
971 01
400 02
260 03
922 04
970 05
543 06
532 07
050 08
067 09
;

run ;

To use key-indexing on such a key, we would allocate a
[0:999] table and map each key to the node whose number
is the key value. However, out of 1000 table nodes, only 10
will be occupied. The rest will idle playing the role of
placeholders. That is, 99 per cent of the array memory will
be simply wasted! The crucial question is thus: Can we get
away with a table only somewhat larger than the number of
lookup keys, and keep the benefits of direct addressing?

To answer it, let us pick some number HSIZE greater than
the number of keys N_SMALL in SMALL, for instance, 17, and
allocate an array sized as HKEY(0:17). Let us agree to call
the array a hash table, HSIZE - hash table size, and the ratio
N_SMALL/HSIZE - load factor. Thus, the load factor shows
the number of lookup keys relative to the total number of
nodes in the hash table, i.e. the sparsity of the table. In our
example, the load factor is 0.588, or the table is about 41
percent sparse.

Now envisage some rapidly-computing function H(KEY)
taking KEY as an argument and returning an address H into
HKEY, unique to each key supplied, thus mapping any lookup
key to its own node:

KEY H(KEY) Unique Address in [1:HSIZE]

That would be a perfect hash function. If it existed, we
would only have to plug it into the key-indexing code.
Although such functions are possible, they are quite difficult
to discover, and once one is found, it can only be used for
the same set of keys: Adding just an extra key will ruin
everything.

A less rigid method can be obtained if we let H(KEY) map
two or more distinct keys to the same location in HKEY:

KEY H(KEY) Some Address in [1:HSIZE]

If more than one key is sent to the same address, a collision
occurs, and we must do something to tell the keys hashing
to the same address apart. In other words, we have to
employ a collision resolution policy to distinguish between
keys hashing to the same location in the process of insertion
and searching.

Thus, we arrive at the core concept behind hashing. If the
hash function H(KEY) maps only a few keys per hash bucket
H spreading the lookup keys evenly among the buckets, we
can do the following:

1. Use H(KEY) to hash KEY to some address H.
2. If the content of H is empty, KEY is not in the table,

since no key has ever hashed to H.
3. If the address is occupied, search among the few keys

that have hashed to the bucket H.

Within each address, the search can be organized in a
number of ways. With a large number of buckets and only a
few keys per bucket, straight sequential search is the
simplest and fastest. In the framework of V8-Hash hand-
coded hashing, it is practically the only reasonable way to
go, although it could conceivably be binary search or
something else. Most importantly, once the only bucket H
where KEY can reside has been found, the keys in this
bucket are searched via a comparison-based algorithm.

Thus, hashing is a typical hybrid algorithm: It combines
direct addressing with a method based on comparisons
between keys in its final key-seeking stage. The average
number of keys mapping to any hash node equals
N_SMALL/HSIZE, i.e. the load factor. If the hash table is not
full and the keys are spread uniformly, the average number
of key comparisons required to find or reject a key is less
than 1. Also, searching for a key should be the faster, the
sparser the table is. So, to make a good practical use of a
hash table, we ought to:

1. Choose a proper hash function H(KEY).
2. Find an efficient way of resolving collisions.

A good hash function apparently must:

1. Be rapidly computable.
2. Distribute lookup keys uniformly over the table.
3. Map them in the [0:HSIZE-1] range.

Among a number of techniques conforming to these
requirements, the simplest is the division method:

H = MOD (KEY, HSIZE) ;

The number theory tells us that if HSIZE is a prime number
far from a power of 2, MOD tends to spread the keys
uniformly. Let us see how this would work for our sample set
of 10 keys. If we choose the “target” load factor as 0.625
and divide it into the number of keys, we obtain 16. The first
prime number greater or equal to 16 is 17, so let us select
HSIZE=17. (The actual load factor is now 10/17 = 0.588.)
So, we could allocate the table as

ARRAY HKEY (0:17) _TEMPORARY_ ;

To get a hash address, KEY is divided by HSIZE=17, and the
remainder H is computed. H points to the H-th slot in the
table where KEY must be inserted. Repeating this operation
for all test keys yields the following:

H

00 . . .
01 970 . .
02 971 . .
03 . . .
04 922 . .
05 260 532 .
06 . . .
07 . . .
08 . . .

09 400 . .
10 . . .
11 . . .
12 . . .
13 . . .
14 . . .
15 185 . .
16 543 050 067
17 . . .

The keys 970, 971, 922, 400, and 185 all map to their slots
in HKEY one-to-one. The keys 260 and 532 produce a single
collision at the address 05, and the keys 543, 050, and 067
result in a double collision in the node 16. If this table is to
be stored in memory and searched, the collisions at the
locations 05 and 16 have to be resolved.

No matter how good a hash function is, some keys are very
likely to hash to the same addresses, so we will have to
resolve collisions. This is another point at which hashing
radically deviates from pure direct addressing, where keys
are not stored in the table itself. With hashing, the keys
themselves reside in the table, because they may need to be
compared to a search key. Collision resolution policies differ
in the ways the colliding keys are stored, linked as being
mapped to the same hash address, and traversed.

Collision Resolution: Separate Chaining

One way of resolving collisions suggests itself naturally once
we cast a rapid glance at the distribution of our 10 keys
among the addresses of the hash table already shown in the
previous section. Keys mapped to each occupied address
form visible “chains”. If an address is uncontested, the chain
consists of a single key or no keys at all if it is empty.
Making use of such chains to resolve collisions is thus called
separate chaining. There are two ways the chains of keys
can be utilized in terms of the SAS DATA step.

First, the keys comprising the chains could be stored outside
the table by placing them in the occurrences of a two-
dimensional array. However, this may well cause very poor
memory utilization. Suppose we have 100,000 keys in
SMALL and map all but one of them so that no address
contains more than, 2 to 4 keys, and a single unlucky
address at which a whole 10 keys collide. In this case, we
will be forced to create a 2-dimensional array sized as
[0:HSIZE , 0:9] to resolve the collisions. Even with the load
factor 1, it would need 10 times the memory the keys
themselves would use.

In V8-Hash, efficient separate chaining cannot by organized
head-on because arrays are allocated at compile time. In
other words, we cannot create a dynamic structure attached
to each hash bucket H (such as a link list or tree) that would
grow each time we need to add a key by the amount of
memory needed to accommodate the key and its satellite(s).
One reason we mention something not possible to do is that
it is exactly what V9-Hash makes possible to achieve.
Therefore, we will return to the separate chaining later in the
V9-Hash section.

Meanwhile in V8-Hash, the problem is solved along the lines
of the Russian proverb “Gol na vydumki khitra” (“That who
lacks resources gets ingenious”). By changing the way of
memory allocation from sequential to linked, we can arrive
at an extremely elegant collision resolution policy called
coalesced list chaining, which is both very fast and
reasonably memory-efficient. The technique is described at
length in [1, 2]; an interested reader is more than welcome
to explore its intricacies.

In this paper, we will discuss the simplest collision resolution
policy called open addressing with linear probing. Its
painstaking description can be found in [1, 2]. Below, we will
take a look at it, sufficient to see how V8-Hash may
approach the collision resolution problem in principle.

Collision Resolution: Linear Probing

The main idea behind open addressing is as follows. Lookup
keys are stored in the hash table itself. Suppose we have
KEY to be loaded. First, hash it:

H = MOD(KEY, HSIZE) ;

If H points to an empty slot, place KEY there, else we have a
collision. In this case, compare KEY with the key already in
H. If the keys are equal, the current key is a duplicate, so we
can either discard it or consider it just another key,
depending on specifications. If duplicate keys are to be
eliminated, get the next key; otherwise find a different slot
for KEY. Step up the table one or more times one node at a
time by adding 1 to H. The maximum address to which KEY
can hash is HSIZE-1. So, if H=HSIZE, we are out of range
[0:HSIZE-1]. To get back there, set H=0 and continue this
wrap-around cycle until having found an empty node and
insert the colliding key there. In this fashion, the table is
“probed” linearly using a fixed probe decrement C=1; hence
the name.

Since we have HSIZE+1 nodes in the table, but can only
address HSIZE nodes from 0 to HSIZE-1, at least 1 location
in the table will always be empty, thus preventing the wrap-
around process from iterating infinitely. Inserting our ten
sample keys into the table in this manner results in the
following:

H HKEY[H] HSAT[H]

00 050 88
01 970 55
02 971 11
03 067 99
04 922 44
05 260 33
06 532 77
07 . .
08 . .
09 400 22
10 . .
11 . .
12 . .
13 . .
14 . .
15 185 00
16 543 66
17 . .

The keys 185, 971, 400, 260, 922, 970, and 543 all hash
without collisions to the locations 15, 02, 09, 05, 04, 01, and
16 respectively. They get inserted into the table together
with their satellites without contention. However, the next
key, 532, hashes to H=05 already occupied by 260.
Incrementing H by 1 results in H+1=06. Since the node 06 is
empty, we place the key 532 and its satellite at H=6. The
next key, 050, hashes to H=16, but it is already taken up by
543. Incrementing H by 1 results in 17, which is beyond the
hashing range [0:16]. So, we go back to the beginning of the
table by setting H=00. Since this node is empty, we place
050 at H=00. The last key, 067, also claims the spotlight at
H=16. Just like with 050, we go up by one address, have to
wrap to H=00, which now is occupied by 050. Stepping up

the table, we find an empty node at H=03, which is where
KEY=067 and its satellite 99 get inserted.

Now the above of loading the table suggests the way of
searching it. If a search KEY hashes to an empty node, it is
not in the table, period. If the node is not empty, it may or
may not be in the table, so we step up the table until
bumping into an empty slot. What we do before such a slot is
encountered depends on whether the duplicate keys and
satellites from SMALL are to be extracted or not. If they are,
go all the way to the missing slot picking up all lookup keys
equal to the search key (and their satellites) along the way.
If not, stop at the very first instance when a matching key is
found. If we have reached the end of the cluster without
encountering a matching key, it is not in the table.

From these simple examples, it should be clear how linear
probing can reduce the number of probes a comparison-
based search requires. In the worst case scenario for the
table above, linear probing examines 5 keys until it either
finds or rejects a search key. However, the number of
comparisons per average hit/miss search will be close to 1.
Moreover, it will remain the same if we have 1 million lookup
keys and about 1.7 million nodes, i.e. as long as the load
factor remains the same. Therefore, although hashing does
allow some key comparisons in the final stage of the
searching, lookups and insertions occur in O(1) time.
(Compare with the binary search with 4 comparisons for
N=10, and 20 comparisons for N=1,000,000.)

The simplicity of the linear probing leads to simple code:

%let nodupes = 1 ; *0 if dupes to be pulled ;

data match (keep = key s_sat l_sat) ;
 retain nodupes &nodupes.. ;

 array hkey (0 : &hsize) _temporary_ ;
 array hsat (0 : &hsize) _temporary_ ;

 do until (eof1) ;
 set small end = eof1 ;

 do h = mod (key, &hsize) by +1 ;
 if h = &hsize then h = 0 ;
 if hkey(h) = key and nodupes then leave ;
 if hkey(h) = . then do ;
 hkey(h) = key ;
 hsat(h) = s_sat ;
 leave ;
 end ;
 end ;
 end ;
 do until (eof2) ;

 set large end = eof2 ;
 do h = mod (key, &hsize) by +1
 until (hkey(h) = .) ;

 if h = &hsize then h = 0 ;
 if hkey(h) = key then do ;
 s_sat = hsat(h) ;
 output ;
 if nodupes then leave ;
 end ;
 end ;
 end ;
 stop ;

run ;

If the NODUP parameter is set to false, all the satellites
corresponding to duplicate keys in SMALL are extracted, else
only the first one in order is picked.

The main advantage of this scheme is its profound simplicity.
And if the table is sparse enough, it performs very well. As a
rule of thumb, the linear probing will do the hashing job just
right with load factors 0.5 or less, i.e. if the table is more
than half sparse. As it gets fuller, performance deteriorates

because of the primary clustering. Trying to find a place for a
colliding key, we fill out the very first empty location we
come across. Thus, the groups of adjacent occupied
addresses tend to aggregate, forming clusters of keys, which
in turn can bridge together forming bigger clusters. For an
example, look at the addresses [00:06] in our sample table
above. So, if the table is rather full, we may eventually have
to travel practically over the entire table before finding an
empty location, thus degenerating hashing into a sequential
search.

The problem can be alleviated by stepping through the table
more than one node at a time, i.e. making the probe
increment greater than 1. Aided by a couple of tricks from
the number theory, it leads to a method called open
addressing with double hashing that eliminates primary
clustering, so the same speed can be achieved in a fuller
table, which results in better memory utilization. For a
detailed discussion of the double hashing and its SAS
implementation, see [1].

Non-Integer Keys

Test results [1] show that hashing performs admirably by
any account regardless of the collision resolution policy.
However, above examples implied that the keys were
numeric and natural. How do we hash them if they are not?

Let us note first that because in its final stage, hashing is
comparison based, it renders the nature of the keys non-
critical. Both hashes and traversals are used merely to
minimize the number of comparisons necessary to carry out
a search, yet the final hit-or-miss decision (if the hash
address is not empty) is made by comparing some lookup
keys in the table to the search key.

Therefore, we only have to figure out how to devise the hash
function if the key is not a non-negative integer. It must
basically satisfy simple rules:

• Hashing should involve as much of the key information

as possible.
• It must produce an integer in [0:HSIZE-1] range.

Let us consider a number of distinct practical situations. If
the lookup keys are fractional signed SAS numbers, we can
simply rescale the key by multiplying by a suitable integer
constant and/or adding a constant, then applying the MOD
function as usual. If the lookup keys are digit strings
(character variables whose values consist of digits only) is a
simple matter of applying a standard numeric informat. For
example, for a 16-digit string, MOD(INPUT(KEY,16.),HSIZE)
will work just fine. Short digit strings (1 to 8 bytes long) can
be hashed faster as a character variable in general (see
below).

Arbitrary Character Keys

Numerous techniques have been developed to hash arbitrary
character keys [2, 3, 4]. Almost all of them are based on
breaking a character key apart and then involving the
individual bytes into a sort of computation resulting in an
integer in the range [0:HSIZE-1]. However, in SAS sub-
stringing and concatenation are rather slow. Instead, we can
let call for an integer binary informat to do the job:

H = MOD (INPUT(KEY,PIBw.), HSIZE) ;

In a single shot, this obviates sub-stringing and converts KEY
in to a (large) number that can be divided by HSIZE. The
method has its limitations (see [1] for details). However, it
works admirably for character keys more or less

discriminated by their W first characters. If the leading W
bytes tend to be blank, the LEFT function helps mitigate the
situation.

Let us see, for example, how our linear probing would look if,
say, we had KEY as a 9-byte character variable. First, the
hash array HKEY must now be defined with the appropriate
data type as $9, while the satellite array stays intact:

 array hkey (0 : &hsize) $9 _temporary_ ;
 array hsat (0 : &hsize) _temporary_ ;

Secondly, testing for an empty node will be testing for a
blank. With these amendments, the code for inserting a key
into the table transforms into

 do h = mod (input(key,pib6.),&hsize) by +1 ;
 if h = &hsize then h = 0 ;
 if hkey(h) = key and nodupes then leave ;

 if hkey(h) = ‘’ then do ;
 hkey(h) = key ;
 hsat(h) = s_sat ;
 leave ;
 end ;

 end ;

And the code for searching for a key similarly becomes

 do h = mod (input(key,pib6.),&hsize) by +1
 until (hkey(h) = ‘’) ;
 if h = &hsize then h = 0 ;
 if hkey(h) = key then do ;
 s_sat = hsat(h) ;

 output ;
 if nodupes then leave ;

 end ;
 end ;

The properties of the algorithm guarantee that both the
insertion and search run in O(1), i.e. constant, time, as long
as the load factor stays near 0.5. In other words, if it takes T
time units to find/reject a search key for N=10 and
HSIZE=17, it will take T time units to do it for N=100000
and HSIZE about 170000. The same is true for all direct-
addressing methods. Additionally, if the hash function is
good, and the table is sparse, both insertions and searches
appear practically instant. This has a very important
consequence, as it effectively gives the hash table an
alternative meaning of an associative array indexed by a key
of arbitrary type.

Composite Keys

Quite often, a key is composite, i.e. it may consist of an
arbitrary mixture of numeric and/or character variables. A
natural inclination is to concatenate the components and
hash the result. Principally, there is nothing wrong about it;
however, there are two pitfalls. First, concatenation is slow.
Secondly, the key components may concatenate into an
integer lying beyond SAS integer precision. Usually, the
programmer is left alone with the imagination and
knowledge of the data. Principally, hashing a combination of
random bytes selected from all the keys is a reasonable way
to go. As the number of the components of a composite key
grows, all V8 hashing schemes quickly become more
complicated. Aside from devising a decent hash function, we
have to create a separate parallel array for all component
keys and compare all the keys to their array counterparts in
relevant conditionals. That is not to say that it cannot be
done or should not be done if need be. However, we will see
that in V9-Hash, the business of hashing data identified by
composite keys becomes just a breeze.

IV. DIRECT ADDRESSING BY HASHING: >= V9

SAS Version 9 has introduced many new features into the
Data step language. Most of them, expanding existing
functionality and/or improving its performance, are rather
incremental. However, one novel feature stands out as a
breakthrough: Associative arrays of hashes.

V9-Hash Propaedeutics

Perhaps the best way to get a fast taste of this mighty
addition to the Data step family is to see how it can help
solve our sample matching problem. Let us assume, for an
extra kick, that KEY is a character variable of length 9:

data match (drop = rc) ;
 length key $9 s_sat 8 ;

 declare AssociativeArray hh () ;

 rc = hh.DefineKey ('key') ;
 rc = hh.DefineData ('s_sat') ;
 rc = hh.DefineDone () ;

 do until (eof1) ;
 set small end = eof1 ;
 rc = hh.add () ;
 end ;
 do until (eof2) ;
 set large end = eof2 ;
 rc = hh.find () ;
 if rc = 0 then output ;
 end ;
 stop ;
run ;

After all the trials and tribulations of coding hashing
algorithms by hand, this simplicity looks rather stupefying.
But how does this code go about its business?

• LENGTH statement gives SAS the attributes of the key

and data elements before the methods defining them
could be called.

• DECLARE AssociativeArray statement declares and
instantiates the associative array (hash table) HH.

• DefineKey method describes the variable(s) to serve as
a key into the table.

• DefineData method is called if there is a non-key
satellite information, in this case, S_SAT, to be loaded in
the table.

• DefineDone method is called to complete the
initialization of the hash object.

• ADD method grabs a KEY and S_SAT from SMALL and
loads both in the table. Note that for any duplicate KEY
coming from SMALL, ADD() will return a non-zero code
and discard the key, so only the first instance the
satellite corresponding to a non-unique key will be used.

• FIND method searches the hash table HH for each KEY
coming from LARGE. If it is found, the return code is set
to zero, and host S_SAT field is updated with its value
extracted from the hash table.

If you think it is prorsus admirabile, then the following step
does the same with even less coding:

data match ;
 set small point = _n_ ; *get key/data attributes
;
 *set small (obs = 1) ; *this will work, too! ;
 *set small (obs = 0) ; *but this will not! ;
 *if 0 then set small ; *and neither will this!
;

 dcl hash hh (dataset: 'work.small',hashexp: 10);

 hh.DefineKey ('key') ;
 hh.DefineData ('s_sat') ;
 hh.DefineDone () ;

 do until (eof2) ;
 set large end = eof2 ;
 if hh.find () = 0 then output ;

 end ;
 stop ;

run ;

Here are notable differences:

• Instead of the LENGTH statement, we can give the

Define methods key and data attributes by reading a
record from SMALL. Somewhat surprisingly, is not
sufficient just to read a descriptor; there must be a
record read at run-time.

• DCL can be used as a shorthand for DECLARE.
• Keyword HASH can be used as an alias instead of

ASSOCIATIVEARRAY. To the delight of those of us typo-
impaired, it means: When people speak, SAS listens!

• Instead of loading keys and satellites from SMALL one
datum at a time, we can instruct the hash table
constructor to load the table directly from the SAS data
file SMALL by specifying the file in the hash declaration.

• The HASHEXP named parameter tells the table
constructor to allocate 2**10=1024 hash buckets.

• Assigning return codes to a variable when the methods
are called is not mandatory. Omitting the assignments
shortens notation.

Parameter Type Matching

The LENGTH statement in the first version of the step or the
attribute-extracting SET in the second one provide for what
is called parameter type matching. When a method, such as
FIND, is called, it presumes that a variable into which it can
return a value matches the type and length FIND expects it
to be.

It falls squarely upon the shoulders of the programmer to
make sure parameter types do match. The LENGTH or SET
statements above achieve the goal by giving the table
constructor the names of existing Data step variables for the
key (KEY, length $9) and satellite data (S_SAT, length 8).

Doing so simultaneously creates Data step host variable
S_SAT, into which the FIND method (and others, as we will
see later in the iterator section) automatically copies a value
retrieved from the table in the case of a successful search.

Handling Duplicate Keys

When a hash table is loaded from a data set, SAS acts as if
the ADD method were used, that is, all duplicate key entries
but the very first get ignored. Now, what if in the file SMALL,
duplicated keys corresponded to different satellite values,
and we needed to pull the last instance of the satellite?

In V8-Hash, duplicate-key entries can be controlled
programmatically by twisting the guts of the hash code. To
achieve the desired effect in V9-Hash, we should call the
REPLACE method instead of the ADD method. But to do so,
we have to revert back to the loading of the table in a loop
one key entry at a time:

 do until (eof1) ;
 set small end = eof1 ;

 hh.replace () ;

 end ;

Note that at this point, V9 hashing does not provide a
mechanism of storing and/or handling duplicate keys with
different satellites in one and the same hash table. This
difficulty can be principally circumvented, if need be, by
discriminating the primary key by creating a secondary key
from the satellite, thus making the entire composite key
unique. All the more, it is further aided by the ease with
which V9-Hash tables can store and manipulate composite
keys.

Composite Keys and Multiple Satellites

In V8-Hash, creating a composite hash key can be a breeze
or a pain, depending on the type, range, and length of the
component keys [1]. But in any case, the programmer needs
to know the data beforehand and often demonstrate a good
deal of ingenuity.

V9-Hash makes it all easy. The only thing we need to do in
order to create a composite key is define the types and
lengths of the key components and instruct the constructor
to use them in the specified subordinate sequence. For
example, if we needed to create a hash table HH keyed by
variables defined as

length k1 8 k2 $3 k3 8 ;

and in addition, had multiple satellites to store, such as

length a $2 b 8 c $4 ;

we could simply code:

 dcl hash hh () ;

 hh.DefineKey ('k1', 'k2', 'k3') ;
 hh.DefineData ('a', 'b', 'c') ;
 hh.DefineDone () ;

and the internal hashing scheme will take due care about
whatever is necessary to come up with a hash bucket
number where the entire composite key should fall together
with its satellites.

Multiple keys and satellite data can be loaded into a hash
table one element at a time by using the ADD or REPLACE
methods. For example, for the table defined above, we can
value the keys and satellites first and then call the ADD or
REPLACE method:

 k1 = 1 ; k2 = 'abc' ; k3 = 3 ;
 a = 'a1' ; b = 2 ; c = 'wxyz' ;
 rc = hh.replace () ;

 k1 = 2 ; k2 = 'def' ; k3 = 4 ;
 a = 'a2' ; b = 5 ; c = 'klmn' ;
 rc = hh.replace () ;

Alternatively, these two table entries can be coded as

hh.replace (key: 1, key: 'abc', key: 3,
 data: 'a1', data: 2, data: 'wxyz') ;

hh.replace (key: 2, key: 'def', key: 4,
 data: 'a2', data: 5, data: 'klmn') ;

Note that more that one hash table entry cannot be loaded in
the table at compile-time at once, as it can be done in the
case of arrays. All entries are loaded one entry at a time at
execution time.

Perhaps it is a good idea to avoid hard-coding data values in
a Data step, and instead always load them in a loop either
from a file or, if need be, from arrays. Doing so reduces the
propensity of the program to degenerate into what Master
Ian Whitlock calls “wall paper”, and separates code from
data.

Hash Parameters as Expressions

The two steps above may have already given a hash-hungry
reader enough to start munching mind-boggling
programming opportunities opened by the availability of the
SAS-prepared hash food without the necessity to cook it. To
add a little more spice to it, let us rewrite the step yet
another time:

data match ;
 set small (obs = 1) ;
 retain dsn ‘small’ x 10 kn ‘key’ dn ‘s_sat’ ;

 dcl hash hh (dataset: dsn, hashexp: x) ;

 hh.DefineKey (kn) ;

 hh.DefineData (dn) ;
 hh.DefineDone () ;

 do until (eof2) ;
 set large end = eof2 ;
 if hh.find () = 0 then output ;
 end ;
 stop ;

run ;

As we see, the parameters passed to the constructor (such
as DATASET and HASHEXP) and methods need not be
necessarily hard-coded literals. They can be passed as
valued Data step variables, or even as appropriate type
expressions. For example, it is possible to code (if need be):

retain args ‘small key s_sat’ n_keys 1e6;

dcl hash hh (dataset: substr(args,1,5)
 hashexp: log2(n_keys)
) ;
hh.DefineKey (scan(s, 2)) ;
hh.DefineData (scan(s,-1)) ;
hh.DefineDone () ;

Hash Iterator

During both hash table load and lookup the sole question we
need to answer is whether the particular search key is in the
table or not. The FIND method gives the answer without any
need for us to know what other keys may or may not be
stored in the table. However, in a variety of situations we do
need to know the keys and data already stored in the table
at the moment. How do we do that?

In V8-Hash it is simple since we had full access to the guts of
the table: Merrily run through all table nodes sequentially
and extract the keys and satellites corresponding to all
occupied nodes. For example, for the linearly probed table,
all it takes is this:

do h = 0 to &hsize - 1 ;
 if missing (hkey (h)) then continue ;
 key = hkey (h) ;
 s_sat = hsat (h) ;
 < ... further processing ... >
end ;

In V9-Hash one answer could be to maintain an auxiliary
array and store a key there every time it is loaded in the

hash table. Then run through the keys in the array serially,
using the FIND method to dump the table one key at a time.

Actually, it might make sense if the goal is to retrieve the
data from the table in which they have been entered.
However, often times it is much more beneficial to be able to
dump the table in a sorted key order. For this purpose, SAS
provides the hash iterator object.

Let us consider a simple program that should make it all
clear:

data sample ;
 input k sat ;
cards ;
185 01
971 02
400 03
260 04
922 05
970 06
543 07
532 08
050 09
067 10
 ;
run ;

data _null_ ;
 set sample point = _n_ ;

 dcl hash hh (dataset: 'sample',
 hashexp: 8 ,
 ordered: 1) ;
 dcl hiter hi ('hh') ;

 hh.DefineKey ('k') ;
 hh.DefineData ('sat' , 'k') ;
 hh.DefineDone () ;

 do rc = hi.first () by 0 while (rc = 0) ;
 put k = z3. +1 sat = z2. ;
 rc = hi.next () ;
 end ;

 do rc = hi.last () by 0 while (rc = 0) ;
 put k = z3. +1 sat = z2. ;
 rc = hi.prev () ;
 end ;
 stop ;
run ;

We see that now the hash table is instantiated with the non-
zero option ORDERED. Without such arrangement, the
subsequent iterator object declaration

dcl hiter hi ('hh') ;

would fail. Note that the hash object symbol name must be
passed to the iterator as a character string, either hard-
coded as above or as a character expression resolving to the
symbol name of a declared hash object, in this case, “HH”.
After the iterator HI has been successfully instantiated, it can
be used to fetch entries from the hash table in a sorted order
by key.

To retrieve hash table entries in an ascending order, we
must first point to the entry with the smallest key. This is
done by the method FIRST:

rc = hi.first () ;

where HI is the name we have assigned to the iterator. A
successful call to FIRST fetches the smallest key into the
host variable K and the corresponding satellite - into the host

variable SAT. Once this is done, each call to the NEXT
method will fetch the hash entry with the next key in
ascending order. When no keys are left, the NEXT method
returns RC > 0, and the loop terminates. Thus, the first loop
will print in the log:

k=050 sat=09
k=067 sat=10
k=185 sat=01
k=260 sat=04
k=400 sat=03
k=532 sat=08
k=543 sat=07
k=922 sat=05
k=970 sat=06
k=971 sat=02

Inversely, the second loop retrieves table entries in
descending order by starting off with the call to the LAST
method fetching the entry with the largest key. Each
subsequent call to the method PREV extracts an entry with
the next smaller key until there are no more keys to fetch, at
which point PREV returns RC > 0, and the loop terminates.
Therefore, the loop prints:

k=971 sat=02
k=970 sat=06
k=922 sat=05
k=543 sat=07
k=532 sat=08
k=400 sat=03
k=260 sat=04
k=185 sat=01
k=067 sat=10
k=050 sat=09

An alert reader might be curious why the key variable had to
be also supplied to the DefineData method? After all, each
time the DO-loop iterates, the iterator points to a new key
and fetches a new key entry. The problem is that the host
key variable K is updated only once, as a result of the FIRST
or LAST method call. Calls to PREV and NEXT methods do not
update the host key variable. However, a satellite hash
variable does! So, if in the step above, it had not been
passed to the DefineData method as an additional argument,
only the key values 050 and 971 would have been printed.

At this point, it is not clear whether it is a design feature or
something that will be addressed when V9 hashing will
emerge from the experimental stage and go real production.
Either way, it can always be circumvented by the trick shown
above.

Iterator Programming Example: Array Sorting

The ability of a hash iterator to rapidly retrieve hash table
entries in order is an extremely powerful feature which will
surely find a lot of use in Data step programming.

The first iterator programming application that springs to
mind immediately is using its key ordering capabilities to sort
another object. The easiest and most apparent prey is a SAS
array. Note, though, that since a V9 hash table cannot hold
duplicate keys, the arrays sorted below using the first array
A as a key and the second array B - as its satellite - will be
effectively unduplicated. That is, after each sorting loop, the
array A will be sorted from lbound(A) to
lboound(A)+n_unique (in this case, n_unique=86507):

data _null_ ;
 array a (-100000 : 100000) _temporary_ ;
 array b (-100000 : 100000) _temporary_ ;
 do j = lbound (a) to hbound (a) ;
 a (j) = ceil (ranuni (1) * 1e5) ;

 b (j) = j ;
 end ;
 length ka 8 sb 8 ;
 declare hash hh (hashexp: 0, ordered: 1) ;
 declare hiter hi ('hh') ;
 hh.DefineKey ('ka') ;
 hh.DefineData ('ka' , 'sb') ;
 hh.DefineDone () ;
 do j = lbound(a) to hbound(a) ;
 ka = a (j) ;
 if hh.check () = 0 then continue ;
 sb = b (j) ;
 n_unique ++ 1 ;
 hh.add () ;
 end ;
 * sort ascending ;
 rc = hi.first () ;
 do j = lbound (a) by 1 while (rc = 0) ;
 a (j) = ka ;
 b (j) = sb ;
 rc = hi.next () ;
 end ;
 * sort descending ;
 rc = hi.last() ;
 do j = lbound(a) by 1 while (rc = 0) ;
 a (j) = ka ;
 b (j) = sb ;
 rc = hi.prev() ;
 end ;
 stop ;
run ;

Note that HASHEXP=0 was chosen. Since it means 2**0=1,
i.e. a single bucket, we have created a stand-alone
AVL(Adelson-Volsky & Landis) binary tree in a Data step, let
it grow dynamically as it was being populated with keys and
satellites, and then traversed it to eject the data in a
predetermined key order.

Just to give an idea about this hash table performance in
some absolute figures, this entire step runs in about 1.15
seconds on a desktop 933 MHz computer under XP Pro. The
time is pretty deceiving, since 85 percent of it is spent
inserting the data in the tree. The process of sorting 200,001
entries itself takes only scant 0.078 seconds either direction.
Increasing HASHEXP to 16 reduces the table insertion time
by about 0.3 seconds, while the time of dumping the table in
order remains the same.

DATA Step Component Interface

Now that we have a taste of the V9 hashing, let us consider
it from a little bit more general viewpoint.

In Version 9, the hash table (associative array) introduces
the first component object accessible via a rather novel
thingy called DATA Step Component Interface (DSCI). A
component object is an abstract data entity consisting of two
distinct characteristics: Attributes and methods. Attributes
are data that the object can contain, and methods are
operations the object can perform on its data.

From the programming standpoint, an object is a black box
with known properties, much like a SAS procedure. However,
a SAS procedure, such as SORT or FORMAT, cannot be called
from a Data step at run-time, while an object accessible
through DSCI - can. A Data step programmer who wants an
object to perform some operation on its data, does not have
to program it procedurally, but only to call an appropriate
method.

The Hash Object

In our case, the object is a hash table. Generally speaking,
as an abstract data entity, a hash table is an object providing
for the insertion and retrieval of its keyed data entries in
O(1), i.e. constant, time. Properly built V8-Hash direct-
addressed tables satisfy this definition in the strict sense. We
will see that the V9 hash object satisfies it in the practical
sense. The attributes of the hash table object are keyed
entries comprising its key(s) and maybe also satellites.

Before any hash table object methods can be called
(operations on the hash data performed), the object must be
declared. In other words, the hash table must be instantiated
with the DECLARE (DCL) statement, as we have seen above.

The hash table methods are the functions it can perform,
namely:

• DefineKey. Define a set of hash keys.
• DefineData. Define a set of hash table satellites. This

method call can be omitted without harmful
consequences if there is no need for non-key data in the
table. Although a dummy call can still be issued, it is not
required.

• DefineDone. Tell SAS the definitions are done. If the
DATASET argument is passed to the table’s definition,
load the table from the data set.

• ADD. Insert the key and satellites if the key is not yet in
the table (ignore duplicate keys).

• REPLACE. If the key is not in the table, insert the key
and its satellites. Otherwise overwrite the satellites in
the table with new ones.

• FIND. Search for the key. If it is found, extract the
satellite(s) from the table and update the host Data step
variables.

• CHECK. Search for the key. If it is found, just return
RC=0, and do nothing more.

Data Step Object Dot Syntax

As we have seen, in order to call a method, we only have to
specify its name preceded by the name of the object followed
by a period, such as:

hh.DefineKey ()
hh.Find ()
hh.Replace ()
hh.First ()

and so on. This manner of telling SAS Data step what to do
is thus naturally called the Data Step Object Dot Syntax.
Summarily, it provides a linguistic access to a component
object’s methods and attributes.

So far, there are but a couple of component objects
accessible from a Data step through DSCI. However, as their
number grows, we had better get used to the object dot
syntax real soon, particularly those dinosaurs among us who
have not exactly learned this kind of tongue in the
kindergarten...

V9-Hash: A Peek under the Hood

We have just seen the tip of the V9-Hash hash iceberg from
the outside. An inquiring mind would like to know: What is
inside? Not that we really need the gory details of the
underlying code, but it is instructive to know on which
principles the design of the internal SAS table is based in
general. A good driver is always curious what is under the
hood.

Well, in general, hashing is hashing is hashing - which means
that it is always a two-staged process: 1) Hashing a key to

its bucket 2) resolving collisions within each bucket.
Discussing collision resolution schemes, we had to reject the
simple straight separate chaining because of the inability to
dynamically allocate memory one entry at a time, while
reserving it in advance could result in unreasonable waste of
memory.

Since V9-Hash is coded in the underlying software, this
restriction no longer exists, and so separate chaining is
perhaps the most logical way to go. Its concrete
implementation, however, has somewhat deviated from the
classic scheme of connecting keys within each node into a
link list. Instead, each new key hashing to a bucket is
inserted into its binary tree. If there were, for simplicity, only
4 buckets, the scheme might roughly look like this:

 0 1 2 3
+---------+---------+---------+---------+
/ \	/ \	/ \	/ \				
/\ /\	/\ /\	/\ /\	/\ /\				

The shrub-like objects inside the buckets are AVL (Adelson-
Volsky & Landis) trees. AVL trees are binary trees populated
by such a mechanism that on the average guarantees their
O(log(N)) search behavior regardless of the distribution of
the key values.

The number of hash buckets is controlled by the HASHEXP
parameter we have used above. The number of buckets
allocated by the hash table constructor is 2**HASHEXP. So,
if HASHEXP=8, HZISE=256 buckets will be allocated, or if
HASHEXP=16, HSIZE=65536. As of the moment, it is the
maximum. Any HASHSIZE specified over 16 is truncated to
16.

Let us assume HASHEXP=16 and try to see how, given a
KEY, this structure facilitates hashing. First, a mysterious
internal hash function maps the key, whether is it simple or
composite, to some bucket. The tree in the bucket is
searched for KEY. If it is not there, the key and its satellite
data are inserted in the tree. If KEY is there, it is either
discarded when ADD is called, or its satellite data are
updated when REPLACE is called.

Like in V8-Hash, how fast all this occurs depends on the
speed of search. Suppose that we have N=2**20, i.e. about
1 million keys. With HSIZE=2**16, there will be on the
average 2**4 = 16 keys hashing to one bucket. Since N >
HSIZE, the table is overloaded, i.e. its load factor is greater
than 1. However, binary searching the 16 keys in the AVL
tree requires only about 5 keys comparisons. If we had 10
million keys, it would require about 7 comparisons, which
practically makes almost no difference.

Thus the V9 hash table behaves as O(log(N/HSIZE)). While it
is not exactly O(1), it can be considered such for all practical
intents and purposes, as long as N/HSIZE is not way over
100. Thus, by choosing HASHEXP judiciously, it is thus
possible to tweak the hash table performance to some
degree and depending on the purpose.

For example, if the table is used primarily for high-
performance matching, it may be a good idea to specify the
maximum HASHEXP=16, even if some buckets end up
unused. From our preliminary testing, we have not been able
to notice any memory usage penalty exacted by going to the
max, all the more that as of this writing, the Data step does
not seem to report memory used by an object called through
the DSCI. At least, experiments with intentionally large hash
tables show that the memory usage reported in the log is
definitely much smaller than the hash table must have

occupied, although it was evident from performance that the
table is completely memory-resident, and the software
otherwise has no problem handling it. However, with several
thousand keys at hand there is little reason to go over
HASHEXP=10, anyway. Also, if the sole purpose of using the
table is to eject the data in a key order using a hash iterator,
even a single bucket at HASHEXP=0 can do just fine, as we
saw earlier with the array sorting example. On the other
hand, if there is no need for iterator processing, it is better
to leave the table completely iterator-free by not specifying a
non-zero ORDERED option. Maintaining an iterator over a
hash table obviously requires certain overhead.

Hash Table as a Dynamic Data Step Structure

V9 hash table represent the first ever dynamic Data step
structure, i.e. one capable of acquiring memory and growing
at run-time. There are a number of common situations in
data processing when the information needed to size a data
structure becomes available only at execution time. SAS
programmers usually solve such problems either by pre-
processing data, i.e. passing through the data more than
once, or allocating memory resources for the worst case
scenario. As more programmers become familiar with the
possibilities this dynamic structure offers, they will be able to
avoid resorting to many old kludges.

What we cannot do dynamically (at least, for now) is to
make a hash table shrink by deleting its nodes. However, it
is hardly necessary. Firstly, if a keyed entry has been
inserted in the table, there must be a use for it for as long as
the table exists. Secondly, if the table is no longer needed, it
can be simply wiped out by the DELETE method:

rc = hh.Delete () ;

This will eliminate the table from memory for good, but not
its iterator! As a separate object related to a hash table, it
has to be deleted separately:

rc = hi.Delete () ;

If at some point of a Data step program there is a need to
start building the same table from scratch again, remember
that the compiler must see only a single definition of the
same table by the same token as it must see only a single
declaration of the same array (and if the rule is broken, it
will issue the same error message, e.g.: “Variable hh already
defined”). Also, like in the case of arrays, the full declaration
(table and its iterator) must precede any table/iterator
references. In other words, this will NOT compile because of
the repetitive declaration:

20 data _null_ ;
21 length k 8 sat $11 ;
22
23 dcl hash hh (hashexp: 8, ordered: 1) ;
24 dcl hiter hi ('hh') ;
25 hh.DefineKey ('k') ;
26 hh.DefineData ('sat') ;
27 hh.DefineDone () ;
28
29 hh.Delete () ;
30
31 dcl hash hh (hashexp: 8, ordered: 1) ;
 -
 567
ERROR 567-185: Variable hh already defined.

32 dcl hiter hi ('hh') ;
 -
 567
ERROR 567-185: Variable hi already defined.

And this will not compile because at the time of the DELETE
method call, the compiler has not seen HH yet:

39 data _null_ ;
40 length k 8 sat $11 ;
41 link declare ;
42 rc = hh.Delete() ;

 557
 68
ERROR 557-185: Variable hh is not an object.
ERROR 68-185: The function HH.DELETE is unknown, or
cannot be accessed.

43 link declare ;
44 stop ;
45 declare:
46 dcl hash hh (hashexp: 8, ordered: 1)
;
47 dcl hiter hi ('hh') ;
48 hh.DefineKey ('k') ;
49 hh.DefineData ('sat') ;
50 hh.DefineDone () ;
51 return ;
52 stop ;
53 run ;

However, if we do not dupe the compiler and reference the
object after it has seen it, it will work as designed:

199 data _null_ ;
200 retain k 1 sat 'sat' ;
201 if 0 then do ;
202 declare:
203 dcl hash hh (hashexp: 8, ordered: 1)
;
204 dcl hiter hi ('hh') ;
205 hh.DefineKey ('k') ;
206 hh.DefineData ('sat') ;
207 hh.DefineDone () ;
208 return ;
209 end ;
210 link declare ;
211 rc = hi.First () ;
212 put k= sat= ;
213 rc = hh.Delete () ;
214 rc = hi.Delete () ;
215 link declare ;
216 rc = hh.Delete () ;
217 rc = hi.Delete () ;
218 stop ;
219 run ;

k=1 sat=sat

Of course, the most natural and trouble-free way to declare
a table, process it, free, and declare the same table from
scratch again is to place the entire process in a loop. This
way, the declaration is easily placed ahead of references,
and the compiler sees the declaration just once. In a
moment, we will see an example of doing exactly that.

Dynamic DATA Step Data Dictionaries

The fact that hashing supports searching (and thus retrieval
and update) in constant time makes it ideal for using a hash
table as a dynamic Data step data dictionary. Suppose that
during DATA step processing, we need to memorize certain
key elements and their attributes on the fly, and at different
points in the program, answer the following:

1. Has the current key already been used before?
2. If it is new, how to insert it in the table, along with its

attribute, in such a way that the question 1 could be
answered as fast as possible in the future?

3. Given a key, how to rapidly update its satellite?

4. If the key is no longer needed, how to delete it?

V8-Hash programming examples showing how key-indexing
can be used for this kind of task are given in [1]. Here we
will take an opportunity to show what V9-Hash can do to
help an unsuspecting programmer. Imagine that we have
input data of the following arrangement:

data sample ;
 input id transid amt ;
 cards ;

1 11 40
1 11 26
1 12 97
1 13 5
1 13 7
1 14 22
1 14 37
1 14 1
1 15 43
1 15 81
3 11 86
3 11 85
3 11 7
3 12 30
3 12 60
3 12 59
3 12 28
3 13 98
3 13 73
3 13 23
3 14 42
3 14 56
;
run ;

The file is grouped by ID and TRANSID. We need to
summarize AMT within each TRANSID giving SUM, and for
each ID, output 3 transaction IDs with largest SUM. Simple!
In other words, for the sample data set, we need to produce
the following output:

id transid sum

 1 15 124
 1 12 97
 1 11 66
 3 13 194
 3 11 178
 3 12 177

 Usually, this is a 2-step process, either in the foreground or
behind the scenes (SQL). Since a V9 hash table can eject
keyed data in a specified order, it can be used to solve the
problem in a single step:

data id3max (keep = id transid sum) ;
 length transid sum 8 ;

 dcl hash ss (hashexp: 3, ordered: 1) ;
 dcl hiter si ('ss') ;

 ss.defineKey ('sum') ;
 ss.defineData ('sum', 'transid') ;

 ss.defineDone () ;
 do until (last.id) ;
 do sum = 0 by 0 until (last.transid) ;
 set sample ;

 by id transid ;
 sum ++ amt ;

 end ;
 rc = ss.replace () ;

 end ;
 rc = si.last () ;

 do cnt = 1 to 3 while (rc = 0) ;
 output ;
 rc = si.prev () ;

 end ;

run ;

The inner Do-Until loop iterates over each BY-group with the
same TRANSID value and summarizes AMT. The outer Do-
Until loop cycles over each BY-group with the same ID value
and for each repeating ID, stores TRANSID in the hash table
SS keyed by SUM. Because the REPLACE method is used, in
the case of a tie, the last TRANSID with the same sum value
takes over. At the end of each ID BY-group, the iterator SI
fetches TRANSID and SUM in the order descending by SUM,
and top three retrieved entries are written to the output file.
Control is then passed to the top of the implied Data step
loop where it encounters the table definition. It causes the
old table and iterator to be dropped, and new ones - defined.
If the file has not run out of records, the outer Do-Until loop
begins to process the next ID, and so on.

CONCLUSION: V8-Hash + V9-Hash

It has been proven through testing and practical real-life
application that direct-addressing methods can be a great
efficiency tool if used wisely. Before the advent of Version 9,
the only way of implementing these methods in a SAS Data
step was coding them by hand. This is what we term V8-
Hash in this paper. While it is a lot of fun and produces great
results, it is primarily efficient from the standpoint of the
machine time. The main principles of V8-Hash are
programming ingenuity, algorithmic knowledge, and “thou
shalt know thy data”, “thy data” being chiefly the properties
of the hash keys involved in the process.

V9-Hash provides an access to algorithms of the same type
and hence with the same high-performance potential via an
object. While being aware of its guts does not hurt, it is not
necessary for a programmer to know the details, for great
results - on par or better than those of V8-Hash - can be
achieved just by following syntax rules and learning which
methods cause the black box called a hash table to produce
coveted results. Thus, along with improving computer
efficiency, V9-Hash also makes great strides in programming
efficiency.

If this is the case, does it mean that V9-Hash makes V8-
Hash and custom hash coding obsolete?

Not necessarily. Surely it will prompt some folks, who have
never touched hashing because it has not been a canned
function, to start using it now. However, those very folks are
likely to discover that a sizeable direct-addressing territory is
better covered by the traditional V8-Hash hand coding.
Below is a short V8-Hash vs. V9-Hash comparison list
intended to outline the areas where one or the other
dominate and/or coexist:

• Simple numeric key falling in a limited range. SAS date

and time values are good examples. This is the area
where V8-Hash key-indexed search completely
dominates the competition both in computer and
programming efficiency.

• Simple numeric key with the range up to 9 digits; no
satellites needed. Bitmapping is king.

• Simple numeric key or short (up to 8-10 bytes)
character key. Both generations do well. If ultimate
speed is the issue, hand-coding still does better, but not
by much. V9-Hash may have the advantage of coding
simplicity.

• Composite keys. This is mainly V9-Hash territory. V8-
Hash is better if the keys can be rapidly combined in a

short integer. If the composite key is of the mixed type,
V9-Hash is king.

• Retrieving data by key from a hash table in order. V8-
Hash can provide such functionality only through array
sorting. V9-Hash provides a hash iterator object
specifically for this purpose, and once the data are in the
table, it works very fast.

• Storing and handling duplicate key entries in a hash
table. V8-Hash is more flexible here. V9-Hash only lets
you control which duplicate takes over, but its table
must be keyed uniquely.

• Dynamic Data step dictionaries. V9-Hash is the ideal tool
here. Its table grows at run-time as new entries are
added, so it is unnecessary to allocate giant memories
beforehand “just in case”.

Finally, it should be noted that at this moment of the Version
9 history, the hash object and its methods are an
experimental feature. To the extent of our testing, they do
work as documented. From the programmer’s viewpoint,
some aspects that might need attention are:

• Parameter type matching in the case where a table is

loaded from a data set. If the data set is named in the
step, the attributes of hash entries should be available
from its descriptor.

• Memory usage reporting. Currently the memory
occupied by a hash table appears to not be reported in
the log.

• An iterator does not write key values directly into a host
key variable when the NEXT and PREV methods are
used. Defining the key variable additionally as a satellite
data element works but looks awkward.

Putting all this aside, the advent of the V9 hash table as the
first dynamic Data step structure is nothing short of a long-
time breakthrough. Hashing has always been fun, but it has
never been as much fun as now.

SAS is a registered trademark or trademark of SAS Institute,
Inc. in the USA and other countries.  indicates USA
registration.

REFERENCES

1. P.Dorfman, Table Lookup by Direct Addressing. SUGI

26, Long Beach, CA, 2001.
2. P.Dorfman, G.Snell, Hashing Rehashed. SUGI 27,

Orlando, FL, 2002.
3. D. E.Knuth, The Art of Computer Programming, 3.
4. J.Secosky. The Data step in Version 9: What’s New?

 SUGI 27, Orlando, FL, 2002.
5. P.Dorfman, G.Snell. Hahsing: Generations. SUGI 28,

Seattle, WA, 2003.

AUTHOR’S CONTACT INFORMATION

Paul M. Dorfman
4427 Summer Walk Ct., Jacksonville, FL 32258
(904) 260-6509
sashole@bellsouth.net

paul_dorfman@hotmail.com

